Cho A= { x∈ R/ /x+2/ >2 , B= { x∈ R/ /x+4/ ≥ 3 , C= [ -5; 3)
Tìm A hợp B , A giao (B hợp C), ( A hợp B) giao (B hợp C)\(_{\left|x+2\right|}\)\(\left|x+2\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Tập hợp A:
\(A=\left[-5;\dfrac{1}{2}\right]\)
Tập hợp B:
\(B=\left(-3;+\infty\right)\)
Mà: \(A\cap B\)
\(\Rightarrow\left\{x\in R|-3\le x\le\dfrac{1}{2}\right\}\)
⇒ Chọn A
\(A=(-\infty;-3]\cup[-4;+\infty)\)
B=(-vô cực,2) giao (5;+vô cực)
1: A hợp B=(-vô cực,2) giao [-4;+vô cực]=R
A\B=[-4;5]
2: (B\A) giao N=(-3;2) giao N=[2;+vô cực)
Lời giải:
Gọi $R(x)$ là đa thức dư khi chia $P(x)$ cho $(x-1)(x-2)(x-3)(x-4)$. Bậc của $R(x)$ phải nhỏ hơn bậc đa thức chia. Do đó đặt:
\(R(x)=ax^3+bx^2+cx+d\)
\(P(x)=Q(x)(x-1)(x-2)(x-3)(x-4)+ax^3+bx^2+cx+d\)
Trong đó $Q(x)$ là đa thức thương.
Theo định lý Bê-du về phép chia đa thức:
\(\left\{\begin{matrix} P(1)=a+b+c+d=-2019\\ P(2)=8a+4b+2c+d=-2036\\ P(3)=27a+9b+3c+d=-2013\\ P(4)=64a+16b+4c+d=-1902\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a=8\\ b=-28\\ c=11\\ d=-2010\end{matrix}\right.\)
Vậy \(R(x)=8x^3-28x^2+11x-2010\)
b)
Từ phần a suy ra:
\(\left\{\begin{matrix} R(1)=P(1)=-2019\\ R(2)=P(2)=-2036\\ R(3)=P(3)=-2013\\ R(4)=P(4)=-1902\\ R(5)=8.5^3-28.5^2+11.5-2010=-1655\end{matrix}\right.\)
\(A=\left\{-3;-2;-1;0;1;2;3;4;5\right\}\)
\(B=\left[3;a\right]\)
\(C=(-\infty;5]\)
\(D=[3;5)\)
\(E=[-2;+\infty)\)
\(F=\left\{0;1;2;3;4;5;6\right\}\)
\(G=\left(1;+\infty\right)\)
\(H=(-\infty;-1]\)
\(K=(-1;5]\)
\(I=(-\infty;4]\)
\(R=\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{3x-5\sqrt{x}}{4-x}\right):\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}-1\right)\left(ĐK:x\ge0,x\ne4\right)\\ =\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{3x-5\sqrt{x}}{\sqrt{x}^2-2^2}\right):\dfrac{2\sqrt{x}-1-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)+3x-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}-2}{2\sqrt{x}-1-\sqrt{x}+2}\\ =\dfrac{3x-6\sqrt{x}+x+2\sqrt{x}+3x-5\sqrt{x}}{\sqrt{x}+2}.\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{7x-9\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)
Bạn xem lại đề nhé, rút gọn thường ra kết quả rất đẹp chứ không dài như kết quả này đâu ạ.