tim cac so tu nhien x sao cho 4x^4+1 la so nguyen to
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9n+24⋮3n+4\)
\(3\left(3n+4\right)+12⋮3n+4\)
\(12⋮3n+4\Rightarrow3n+4\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
3n + 4 | 1 | 2 | 3 | 4 | 6 | 12 |
3n | -3 | -2 | -1 | 0 | 2 | 8 |
n | -1 | -2/3 | -1/3 | 0 | 2/3 | 8/3 |
Vì n là số tự nhiên
=> Vậy ... ko xảy ra
Nếu n>2 thì n luôn luôn là số lẻ => n+1;n+3... là số chẵn => k nguyên tố => n có thể = 2. Nhưng k có 5 số lẻ liên tiếp là 5 số nguyên tố => n\(\in\)∅
Bài 1: Ký hiệu (abcd) là số tự nhiên có 4 chữ số.
(abcd) + (abc) + (ab) + (a) = 1111.a + 111.b + 11.c + d
Vậy 1111.a + 111.b + 11.c + d = 4321
+ Nếu a < 3 => 111.b + 11.c + d > 2098 (vô lý vì b, c, d < 10)
+ Nếu a > 3 => vế trái > 4321
Vậy a = 3 => 111.b + 11.c + d = 988
+ Nếu b < 8 => 11.c + d > 210 (vô lý vì c, d < 10)
+ Nếu b > 8 => vế trái > 988
Vậy b = 8 => 11.c + d = 100
+ Nếu c < 9 => d > 11 (vô lý)
Vậy c = 9; d = 1
=> (abcd) = 3891
Đặt \(A=4x^4+1\)
\(=\left(2x^2\right)^2+2.2x^2.1+1^2-4x^2\)
\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
Điều kiện cần để A là số nguyên tố:
\(\orbr{\begin{cases}2x^2-2x+1=1\\2x^2+2x+1=1\end{cases}\Rightarrow}\hept{\begin{cases}2x\left(x-1\right)=0\\2x\left(x+1\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}\left(x\in N\right)}\)
Nếu x = 0 thì A = 1 không là số nguyên tố (loại)
Nếu x = 1 thì A = 5 là số nguyên tố (thỏa mãn)
Vậy x = 1