Cho hình vẽ : Biết a// BC và b// AC ,\(\widehat{AMB}\)=43 độ.
a)Tính\(\widehat{ACB}\)
b)C/m Rằng : \(\widehat{MBC}=\widehat{MAC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: TRên tia đối của tia MA, lấy K sao cho M là trung điểm của AK
Xét tứ giác ABKC có
M là trung điểm chung của AK và BC
=>ABKC là hình bình hành
=>AB//KC và AB=KC
=>góc BAM=góc CKA
mà góc BAM>góc MAC
nên góc CKA>góc CAK
=>CA>CK
=>CA>AB
b:
TRên tia đối của tia MA, lấy K sao cho M là trung điểm của AK
Xét tứ giác ABKC có
M là trung điểm chung của AK và BC
=>ABKC là hình bình hành
=>AB//KC và AB=KC
=>AC>KC
=>góc CKA>góc CAK
=>góc MAB>góc MAC
a) Ta có: \(\sin\widehat{ACB}=\dfrac{AB}{BC}\)
nên \(AB=\dfrac{3}{5}\cdot20=12\left(cm\right)\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=20^2-12^2=256\)
hay AC=16(cm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBD vuông tại B có BA là đường cao ứng với cạnh huyền CD, ta được:
\(AC\cdot AD=AB^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(BH\cdot BC=AB^2\)(2)
Từ (1) và (2) suy ra \(AC\cdot AD=BH\cdot BC\)
a) Xét tam giác \(MNP\) tam giác \(DEF\) ta có:
\(\widehat M = \widehat D\) (giả thuyết)
\(\widehat N = \widehat E\) (giả thuyết)
Do đó, \(\Delta MNP\backsim\Delta DEF\) (g.g)
Suy ra, \(\frac{{MP}}{{DF}} = \frac{{NP}}{{EF}} \Rightarrow \frac{{18}}{{24}} = \frac{{a + 2}}{{32}} \Rightarrow a + 2 = \frac{{18.32}}{{24}} = 24 \Leftrightarrow a = 24 - 2 = 22\).
Vậy \(a = 22m\).
b) Vì \(ABCD\) là hình thang nên \(AB//CD\).
Vì \(AB//CD \Rightarrow \widehat {ABM} = \widehat {MDC}\) (hai góc so le trong) và \(AB//CD \Rightarrow \widehat {BAM} = \widehat {MCD}\) (hai góc so le trong)
Xét tam giác \(AMB\) và tam giác \(CMD\) có:
\(\widehat {ABM} = \widehat {MDC}\) (chứng minh trên)
\(\widehat {BAM} = \widehat {MCD}\) (chứng minh trên)
Do đó, \(\Delta AMB\backsim\Delta CMD\) (g.g).
Ta có:
\(\frac{{AM}}{{CM}} = \frac{{BM}}{{DM}} = \frac{{AB}}{{CD}} \Leftrightarrow \frac{6}{{15}} = \frac{y}{{10}} = \frac{8}{x}\).
Ta có: \(\frac{6}{{15}} = \frac{y}{{10}} \Rightarrow y = \frac{{10.6}}{{15}} = 4\)
\(\frac{6}{{15}} = \frac{8}{x} \Rightarrow x = \frac{{8.15}}{6} = 20\).
Vậy \(x = 20;y = 4\).
Xét \(\Delta AMB;\Delta BMC\) có :
\(\left\{{}\begin{matrix}AB=BC\left(gt\right)\\BM=MC\\BMchung\end{matrix}\right.\)
\(\Leftrightarrow\Delta AMB=\Delta MBC\left(c-c-c\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{ACB=CAB\left(đpcm\right)}\\\widehat{M1=\widehat{M2}}\end{matrix}\right.\)
b/ Mà \(\widehat{M1}+\widehat{M2}=180^0\left(kềbuf\right)\)
\(\Leftrightarrow\widehat{M1}=\widehat{M2}=\dfrac{180^0}{2}=90^0\left(đpcm\right)\)
Bạn tham khảo lời giải tại link sau:
Câu hỏi của Lê Kiều Trinh - Toán lớp 7 | Học trực tuyến
a: Xét ΔBAC có \(CB^2=CA^2+AB^2\)
nên ΔBAC vuông tại A
b: \(MB=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
MC=AC-AM=25cm
=>MB=MC
hay ΔMBC cân tại M
=>\(\widehat{AMB}=2\cdot\widehat{ACB}\)
HD : xét 2 góc DAC và góc BAE
^DAB+^BAC=^DAC
^CAE+^BAC=^BAE
^DAB=^CAE=90o
=> ^DAC=^BAE
sau đó cm \(\Delta DAC=\Delta BAE\)=> câu a
b) cm DKE =90o
2 câu c ; d dễ tự làm!
Hình Vẽ : file:///D:/My%20Documents/Downloads/New%20Bitmap%20Image.bmp