Tìm max A=\(\dfrac{1}{a^3+b^3+1}\)+\(\dfrac{1}{b^3+c^3+1}\)+\(\dfrac{1}{c^3+a^3+1}\)với a,b,c>0 va abc=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng BĐT AM-GM
\(a^3+b^3+1\ge3ab\Rightarrow\dfrac{1}{a^3+b^3+1}\le\dfrac{1}{3ab}\)
tương tự ta có
\(\dfrac{1}{b^3+c^3+1}\le\dfrac{1}{3bc};\dfrac{1}{a^3+c^3+1}\le\dfrac{1}{3ac}\)
cộng từng vế của BĐT cho nhau
\(C\le\dfrac{1}{3ab}+\dfrac{1}{3bc}+\dfrac{1}{3ac}=\dfrac{a+b+c}{3abc}=\dfrac{a+b+c}{3}\)
mặt khác áp dụng BĐT AM-GM với 3 số a,b,c không âm
\(a+b+c\ge3\sqrt[3]{abc}=3\)
\(\Rightarrow C\le1\)
maxC=1, dấu"=" xảy ra khi a=b=c=1
áp dụng BĐT AM-GM
\(a^3+b^3+1\ge3ab\Rightarrow\dfrac{1}{a^3+b^3+1}\le\dfrac{1}{3ab}\)
tương tự ta có
\(\dfrac{1}{b^3+c^3+1}\le\dfrac{1}{3bc};\dfrac{1}{a^3+c^3+1}\le\dfrac{1}{3ac}\)
cộng các vế của BĐT cho nhau ta có
\(C\le\dfrac{1}{3ab}+\dfrac{1}{3bc}+\dfrac{1}{3ac}=\dfrac{a+b+c}{3abc}=\dfrac{a+b+c}{3}\)
mặt khác ta áp dụng BĐT AM-GM với 3 số a,b,c không âm
\(a+b+c\ge3\sqrt[3]{abc}=1\)
\(\Rightarrow C\le1\Rightarrow Max_C=1\)
dấu "=" xảy ra khi a=b=c=1
3: \(\left\{{}\begin{matrix}a+b>=2\sqrt{ab}\\b+c>=2\sqrt{bc}\\a+c>=2\sqrt{ac}\end{matrix}\right.\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)>=8abc\)
1: =>(a+b)(a^2-ab+b^2)-ab(a+b)>=0
=>(a+b)(a^2-2ab+b^2)>=0
=>(a+b)(a-b)^2>=0(luôn đúng)
\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3\left(a+b\right)}\)
\(=\dfrac{abc}{a^3\left(b+c\right)}+\dfrac{abc}{b^3\left(a+c\right)}+\dfrac{abc}{c^3\left(a+b\right)}\)
\(=\dfrac{bc}{a^2\left(b+c\right)}+\dfrac{ac}{b^2\left(a+c\right)}+\dfrac{ab}{c^2\left(a+b\right)}\)
\(=\dfrac{b^2c^2}{a^2bc\left(b+c\right)}+\dfrac{a^2c^2}{ab^2c\left(a+c\right)}+\dfrac{a^2b^2}{abc^2\left(a+b\right)}\)
\(Cauchy-Schwarz:\)
\(VT\ge\dfrac{\left(bc+ac+ab\right)^2}{abc\left[a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)\right]}\)
\(=\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\)
\(AM-GM:\)
\(ab+bc+ca\ge\sqrt[3]{\left(abc\right)^2}=3\)
\(\Rightarrow VT\ge\dfrac{ab+bc+ca}{2}\ge\dfrac{3}{2}\)
\("="\Leftrightarrow a=b=c=1\)
Lời giải khác:
Áp dụng BĐT AM-GM:
\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{4a^2}}=\frac{1}{a}=\frac{abc}{a}=bc\)
\(\frac{1}{b^3(a+c)}+\frac{b(a+c)}{4}\geq 2\sqrt{\frac{1}{4b^2}}=\frac{1}{b}=\frac{abc}{b}=ac\)
\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq 2\sqrt{\frac{1}{4c^2}}=\frac{1}{c}=\frac{abc}{c}=ab\)
Cộng theo vế và rút gọn:
\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}+\frac{ab+bc+ac}{2}\ge ab+bc+ac\)
\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}\geq \frac{ab+bc+ac}{2}\geq \frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\) (AM_GM)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Bạn tham khảo:
Bài ni hay lắm mn Cho 3 số a , b , c thỏa mãn \(0\le a\le b\le c\le1\) Tìm giá trị lớn nhất của biểu thức \(B=\lef... - Hoc24