K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

áp dụng BĐT AM-GM

\(a^3+b^3+1\ge3ab\Rightarrow\dfrac{1}{a^3+b^3+1}\le\dfrac{1}{3ab}\)

tương tự ta có

\(\dfrac{1}{b^3+c^3+1}\le\dfrac{1}{3bc};\dfrac{1}{a^3+c^3+1}\le\dfrac{1}{3ac}\)

cộng từng vế của BĐT cho nhau

\(C\le\dfrac{1}{3ab}+\dfrac{1}{3bc}+\dfrac{1}{3ac}=\dfrac{a+b+c}{3abc}=\dfrac{a+b+c}{3}\)

mặt khác áp dụng BĐT AM-GM với 3 số a,b,c không âm

\(a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow C\le1\)

maxC=1, dấu"=" xảy ra khi a=b=c=1

23 tháng 4 2017

áp dụng BĐT AM-GM

\(a^3+b^3+1\ge3ab\Rightarrow\dfrac{1}{a^3+b^3+1}\le\dfrac{1}{3ab}\)

tương tự ta có

\(\dfrac{1}{b^3+c^3+1}\le\dfrac{1}{3bc};\dfrac{1}{a^3+c^3+1}\le\dfrac{1}{3ac}\)

cộng các vế của BĐT cho nhau ta có

\(C\le\dfrac{1}{3ab}+\dfrac{1}{3bc}+\dfrac{1}{3ac}=\dfrac{a+b+c}{3abc}=\dfrac{a+b+c}{3}\)

mặt khác ta áp dụng BĐT AM-GM với 3 số a,b,c không âm

\(a+b+c\ge3\sqrt[3]{abc}=1\)

\(\Rightarrow C\le1\Rightarrow Max_C=1\)

dấu "=" xảy ra khi a=b=c=1

21 tháng 8 2021

mong mn giúp mk vs 

6 tháng 6 2023

 Bạn tham khảo bài này trên Quanda nha.loading...  

3: \(\left\{{}\begin{matrix}a+b>=2\sqrt{ab}\\b+c>=2\sqrt{bc}\\a+c>=2\sqrt{ac}\end{matrix}\right.\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)>=8abc\)

1: =>(a+b)(a^2-ab+b^2)-ab(a+b)>=0

=>(a+b)(a^2-2ab+b^2)>=0

=>(a+b)(a-b)^2>=0(luôn đúng)

11 tháng 4 2023

kh có ý 2 à cậu?

10 tháng 8 2018

\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3\left(a+b\right)}\)

\(=\dfrac{abc}{a^3\left(b+c\right)}+\dfrac{abc}{b^3\left(a+c\right)}+\dfrac{abc}{c^3\left(a+b\right)}\)

\(=\dfrac{bc}{a^2\left(b+c\right)}+\dfrac{ac}{b^2\left(a+c\right)}+\dfrac{ab}{c^2\left(a+b\right)}\)

\(=\dfrac{b^2c^2}{a^2bc\left(b+c\right)}+\dfrac{a^2c^2}{ab^2c\left(a+c\right)}+\dfrac{a^2b^2}{abc^2\left(a+b\right)}\)

\(Cauchy-Schwarz:\)

\(VT\ge\dfrac{\left(bc+ac+ab\right)^2}{abc\left[a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)\right]}\)

\(=\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\)

\(AM-GM:\)

\(ab+bc+ca\ge\sqrt[3]{\left(abc\right)^2}=3\)

\(\Rightarrow VT\ge\dfrac{ab+bc+ca}{2}\ge\dfrac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Lời giải khác:

Áp dụng BĐT AM-GM:

\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{4a^2}}=\frac{1}{a}=\frac{abc}{a}=bc\)

\(\frac{1}{b^3(a+c)}+\frac{b(a+c)}{4}\geq 2\sqrt{\frac{1}{4b^2}}=\frac{1}{b}=\frac{abc}{b}=ac\)

\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq 2\sqrt{\frac{1}{4c^2}}=\frac{1}{c}=\frac{abc}{c}=ab\)

Cộng theo vế và rút gọn:

\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}+\frac{ab+bc+ac}{2}\ge ab+bc+ac\)

\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}\geq \frac{ab+bc+ac}{2}\geq \frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\) (AM_GM)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

NV
6 tháng 6 2021

Bạn tham khảo:

Bài ni hay lắm mn Cho 3 số a , b , c thỏa mãn \(0\le a\le b\le c\le1\)       Tìm giá trị lớn nhất của biểu thức \(B=\lef... - Hoc24

6 tháng 6 2021

thầy người miền Trung ạ