cho tam giac ABC vuong tai A co AB=6cm AC= 8cm ke duong cao AH trung tuyen AM cua ABC. qua M ke ME//ACva MF//AB
1. CM: tu giac AEMF la HCN
2. goi O la giao diem cua AM va EF .CHung minh :
a)tu giac CHOF la hinh thang
b) tia HF la tia phan giac cua OHC
3. tinh do dai doan thang AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn tự vẽ hình nhé
1.
xét tứ giác AEMF có: AE//MF,EM//AF
=>AEMF là hình bình hành
mà Â=900
=>AEMF là hình chữ nhật
2.a) xét /\ AMF và /\ CMF có
AM=MC( AM là đg trung tuyến)
AM là cạch chung
góc AFM=CFM=900
=>...(ch-gn)
=>AF=FC
(làm tương tự vói /\ BME và AME)
=>BE=EA
xét tam giác ABC có EF là đg trung bình
=>EF//BC
mà H thuộc BC và O thuộc EF nên OF//HC
xét tứ giác OHCF có OF//HC(CMT)
=>OHCF là hình thang
(giờ mk buồn ngủ quá nên hẹn mai giải tiếp nhé,hoặc bn có thể vào vietjack.com)
a: Xét tứ giác AEMD có
góc AEM=góc ADM=góc DAE=90 độ
nên AEMD là hình chữ nhật
b: Vì M đối xứng với N qua AB
nên ABvuông góc với MN tại E và E là trung điểm của MN
Xét tứ giác AMBN có
E là trung điểm chung của AB và MN
nên AMBN là hình bình hành
mà MA=MB
nên AMBN là hình thoi
c: Xét tứ giác ANMC có
NM//AC
NM=AC
Do đó: ANMC là hình bình hành
=>AM cắt CN tại trung điểm của mỗi đường
=>C,O,N thẳng hàg
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó:ΔBEM=ΔCFM
b: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC
và AB=AC
nên AE=AF
mà ME=MF
nên AM là đường trung trực của EF
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(1)
Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Suy ra: DB=DC
hay D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,D thẳng hàng
Chứng minh :
*) Vì △ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(\text{t/c t/g cân}\right)\)
\(\Rightarrow AB=AC\left(\text{t/c t/g cân}\right)\)
Xét △MEB vuông tại E và △MFC vuông tại F có:
BM = MC ( gt )
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
⇒ △MEB = △MFC( ch - gn )
⇒ EM = FM ( tương ứng )
*)Xét △AEM vuông tại E và △AFM vuông tại F có :
EM = FM ( cmt )
AM - cạnh chung
⇒△AEM = △AFM ( ch - cgv )
⇒ AE = AF ( tương ứng )
*)Xét △AMB và △AMC có:
AB = AC ( cmt )
AM - cạnh chung
MB = MC ( gt )
⇒ △AMB = △AMC ( c.c.c )
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\left(\text{tương ứng}\right)\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\left(\text{kề bù}\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
⇒ AM ⊥ BC ⇒ AM ⊥ EF
*) Vì \(\left\{{}\begin{matrix}AM\perp EF\\AM\perp BC\end{matrix}\right.\) \(\Rightarrow EF\text{//}BC\) ( tính vuông góc đến song song )
O la giao diem cua AM va EF nha lam on jup minh lam cau 3voi