A= 1+2+3+...+1000
Tính A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (1000-1^3) . (1000 - 2^3).........(1000 - 2010^3)
A = (1000 - 1^3)........(1000-10^3).........(1000 - 2010^3)
A = (1000 - 1^3)........... 0 ............. (1000 - 2010^3)
A = 0
A = ( 1000 - 1^3) .....(1000 - 10^3) ....
= (1000 - 1 ^3 )....(1000 - 1000)....
= (1000- 1)....0....
= 0
A=[1000-13].[1000-23]......[1000-103]....[1000-553]
A=[1000-13].[1000-23]....0........[1000-553]
A=0[ vi 1000-103=0 nha bn]
Vay....
(1+2012/1)(1+2012/2)(1+2012/3).......(1+2012/1000)
(1+1000/1)(1+1000/2)..........(1+1000/2012)
Tính A
Vì 103 = 1000 nên :
( 1000 - 103 ) = 0
Số nào nhân với 0 cũng bằng 0
Vậy A = 0
\(A=\left(1+\dfrac{1999}{1}\right)\left(1+\dfrac{1999}{2}\right)...\left(1+\dfrac{1999}{1000}\right)\)
\(=\dfrac{2000}{1}.\dfrac{2001}{2}.\dfrac{2002}{3}...\dfrac{2999}{1000}\)\(=\dfrac{2000.2001.2002...2999}{1.2.3...1000}\)
\(B=\left(1+\dfrac{1000}{1}\right)\left(1+\dfrac{1000}{2}\right)...\left(1+\dfrac{1000}{1999}\right)\)
\(=\dfrac{1001}{1}.\dfrac{1002}{2}.\dfrac{1003}{3}...\dfrac{2999}{1999}\) \(=\dfrac{1001.1002.1003...2999}{1.2.3...1999}\)
\(\Rightarrow A:B=\left(\dfrac{2000.2001.2002...2999}{1.2.3...1000}\right):\left(\dfrac{1001.1002.1003...2999}{1.2.3...1999}\right)\)
\(=\dfrac{2000.2001.2002...2999}{1.2.3...1000}.\dfrac{1.2.3...1999}{1001.1002.1003...2999}\)
\(=\dfrac{2000.2001.2002...2999}{1.2.3...1000}.\dfrac{1.2.3...1000.\left(1001.1002...1999\right)}{1001.1002.1003....1999.\left(2000.2001.2002.2999\right)}\)\(=\dfrac{1.2.3...1000}{1.2.3...1000}=1\)
Vậy \(\dfrac{A}{B}=1\)
A = 500500 nha bạn
tick mình nhá