Rút gọn\(\left(x^2+2\right)^2-\left(2+x\right)\left(x-2\right)\left(x^2+4\right)+10\)
GIÚP MÌNH VỚI MAI MÌNH ĐI HỌC RỒI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Đ}K\text{X}\text{Đ}:x\ne\pm2\)
Ta có: \(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right)\div\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(=\left(\frac{2x+2-4}{\left(x+2\right)^2}\right):\left(\frac{2-x-2}{\left(x+2\right)\left(x-2\right)}\right)=\frac{2x-2}{\left(x+2\right)^2}\cdot\frac{\left(x+2\right)\left(x-2\right)}{-x}\)
\(=\frac{2\left(x-1\right)\left(x-2\right)}{-x\left(x+2\right)}\)
Bạn ơi mik ra \(\dfrac{x^3+45x-54}{12\left(x-3\right)\left(x+3\right)}\) có đúng không bạn?
Mình rút chx hết bạn bạn gửi cách làm bạn qua mình tham khảo đc k ạ?
a) M xác định \(\Leftrightarrow\hept{\begin{cases}x-3\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne3\\x\ne-2\end{cases}}}\)
b) \(M=\frac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}-\frac{5}{\left(x+2\right)\left(x-3\right)}\)
\(M=\frac{x^2-4-5}{\left(x-3\right)\left(x+2\right)}\)
\(M=\frac{x^2-9}{\left(x-3\right)\left(x+2\right)}\)
\(M=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+2\right)}\)
\(M=\frac{x+3}{x+2}\)
a. \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(x+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{3}{\sqrt{x}+3}\)
. \(x=2.\left(4+\sqrt{15}\right).\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)
\(\Rightarrow x=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\sqrt{2}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^3\)\(=4\left(\sqrt{5}-\sqrt{3}\right)\)
Thay \(x=4\left(\sqrt{5}-\sqrt{3}\right)\Rightarrow A=\frac{3}{\sqrt{4\left(\sqrt{5}-\sqrt{3}\right)}+3}\)
\(=\frac{3}{2\sqrt{\left(\sqrt{5}-\sqrt{3}\right)}+3}\)
a;\(10-\left(y^2-25\right)^4\)
vì \(\left(y^2-25\right)^4\ge0\)c với mọi \(Y\varepsilon R\)=>\(10-\left(y^2-25\right)^4\le10\)
vậy giá trị lớn nhất của biểu thức \(10-\left(y^2-25\right)^4\) là 1\(10< =>y^2-25=0=>y=5;y=-5\)
b;\(-125-\left(x-4\right)^2-\left(y-5\right)^2\)=-\(-125-\left[\left(x-4\right)^2-\left(y-5\right)^2\right]\le-125\)
=>giá trị lớn nhất của biểu thức \(-125-\left(x-4\right)^2-\left(y-5\right)^2\) là -125
\(< =>\left(x-4\right)^2=0;\left(y-5\right)^2=0=>x=4'y=5\)
(x2 + 2)2 - (2 + x)(x - 2)(x2 + 4) + 10
= (x2 + 2)2 - (4 - x2)(x2 + 4) + 10
= x4 + 4x2 + 4 - (16 - x4) + 10
= x4 + 4x2 + 4 - 16 + x4 + 10
= 2x4 + 4x2 - 2