K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2018

ta có: \(T=\frac{a^2}{\left(a-b\right).\left(a+b\right)-c^2}+\frac{b^2}{\left(b-c\right).\left(b+c\right)-a^2}+\frac{c^2}{\left(c-a\right).\left(c+a\right)-b^2}\)

\(T=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)

mà a + b + c = 0 => b + c = -a => b2 + 2bc + c2 = a => a2 - b2 - c2 = 2bc

tương tự như trên, ta có: b2  - c2 - a2 = 2ac; c2 - a2 - b2 = 2ab

\(\Rightarrow T=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Lại có: a+b+c = 0 => a3 + b3 + c3 = 3abc

\(\Rightarrow T=\frac{3abc}{2abc}=\frac{3}{2}\)

16 tháng 12 2019

 tự giải ak

16 tháng 12 2019

Có người nhờ giải ấy @gunny :33

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Lời giải:

Xét:

\(\frac{a^4}{(a+b)(a^2+b^2)}+\frac{b^4}{(b+c)(b^2+c^2)}+\frac{c^4}{(c+a)(c^2+a^2)}-\left[\frac{b^4}{(a+b)(a^2+b^2}+\frac{c^4}{(b+c)(b^+c^2)}+\frac{a^4}{(c+a)(c^2+a^2)}\right]\)

\(=\frac{a^4-b^4}{(a+b)(a^2+b^2)}+\frac{b^4-c^4}{(b+c)(b^2+c^2)}+\frac{c^4-a^4}{(c+a)(c^2+a^2)}=a-b+b-c+c-a=0\)

\(\Rightarrow \frac{a^4}{(a+b)(a^2+b^2)}+\frac{b^4}{(b+c)(b^2+c^2)}+\frac{c^4}{(c+a)(c^2+a^2)}=\frac{b^4}{(a+b)(a^2+b^2}+\frac{c^4}{(b+c)(b^+c^2)}+\frac{a^4}{(c+a)(c^2+a^2)}\)

\(\Rightarrow 2P=\frac{a^4+b^4}{(a+b)(a^2+b^2)}+\frac{b^4+c^4}{(b+c)(b^2+c^2)}+\frac{c^4+a^4}{(c+a)(c^2+a^2)}\)

Áp dụng hệ quả quen thuộc của BĐT AM-GM: \(x^2+y^2\geq \frac{(x+y)^2}{2}\) ta có:

\(a^4+b^4\geq \frac{(a^2+b^2)^2}{2}\)

\(a^2+b^2\geq \frac{(a+b)^2}{2}\)

\(\Rightarrow a^4+b^4\geq \frac{(a^2+b^2).\frac{(a+b)^2}{2}}{2}=\frac{(a^2+b^2)(a+b)^2}{4}\)

\(\Rightarrow \frac{a^4+b^4}{(a+b)(a^2+b^2)}\geq \frac{a+b}{4}\). Tương tự với các phân thức còn lại:

\(\Rightarrow 2P\geq \frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}=2\)

\(\Rightarrow P\geq 1\). Vậy \(P_{\min}=1\Leftrightarrow a=b=c=\frac{4}{3}\)

20 tháng 11 2018

\(a=b=c=\dfrac{4}{3}\Rightarrow P=1\)

Ta se cm \(P=1\) la GTNN cua P hay \(Σ\dfrac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge1\)

C-S: \(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{Σ\left(a+b\right)\left(a^2+b^2\right)}\)

Hay ta can cm bdt \(\dfrac{\left(a^2+b^2+c^2\right)^2}{Σ\left(a+b\right)\left(a^2+b^2\right)}\ge1=\dfrac{a+b+c}{4}\)

\(\Leftrightarrow4\left(a^2+b^2+c^2\right)^2\ge\left(a+b+c\right)\left(Σ\left(a+b\right)\left(a^2+b^2\right)\right)\)

\(\LeftrightarrowΣ\left(a-b\right)^2\left(a^2+b^2+c^2-ab\right)\ge0\)

13 tháng 10 2019

A \(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-a\right)\left(c-a\right)}\)

\(=\frac{2\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{2\left(a-b\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{2\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-a\right)\left(c-a\right)}\)

\(=\frac{2\left(b-c\right)\left(c-a\right)+2\left(a-b\right)\left(c-a\right)+2\left(a-b\right)\left(b-c\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-a\right)\left(c-a\right)}\)

\(=\frac{2ab+2ac+2bc-2a^2-2b^2-2c^2+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-a\right)\left(c-a\right)}\)

\(=\frac{-\left(a^2-2ab+b^2\right)-\left(b^2-2bc+c^2\right)-\left(c^2-2ac+a^2\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-a\right)\left(c-a\right)}\)

\(=\frac{-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-a\right)\left(c-a\right)}\)

\(=\frac{0}{\left(a-b\right)\left(b-a\right)\left(c-a\right)}\) = 0