K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

\(x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3.\left(2-\sqrt{3}\right)}\)

\(\Leftrightarrow8-x^2=2\sqrt{2+\sqrt{3}}+2\sqrt{3.\left(2-\sqrt{3}\right)}\)

\(\Leftrightarrow x^4-16x^2+64=4\left(2+\sqrt{3}+6-3\sqrt{3}+2\sqrt{3}\right)\)

\(\Leftrightarrow x^4-16x^2+64=32\)

\(\Leftrightarrow x^4-16x^2+32=0\)

Vậy có điều phải chứng minh.

27 tháng 8 2016

x0= 8 - ( \(2\sqrt{2+\sqrt{3}}\)\(2\sqrt{6-3\sqrt{3}}\)) (1)

Ta có (  \(2\sqrt{2+\sqrt{3}}\)\(2\sqrt{6-3\sqrt{3}}\))2 = 32

Do đó x02 = 8 - \(\sqrt{32}\)(2)

PT <=> (x- 8)2 - 32 = 0 (3)

Thế (2) vào (3) thì đúng

Vậy x0 là nghiệm của PT

17 tháng 8 2018

Đặt \(\sqrt{2+\sqrt{3}}=a\left(a>0\right)\)

Ta có x=\(\sqrt{2+a}-\sqrt{3\left(2-a\right)}\Rightarrow x^2=2+a+3\left(2-a\right)-2\sqrt{3\left(2+a\right)\left(2-a\right)}\)\(=8-2a-2\sqrt{3\left(4-a^2\right)}=8-2a-2\sqrt{3\left(4-2-\sqrt{3}\right)}=8-2a-\sqrt{6}\sqrt{4-2\sqrt{3}}\)

\(=8-2\sqrt{2+\sqrt{3}}-\sqrt{6}\left(\sqrt{3}-1\right)=8-\sqrt{2}\sqrt{4+2\sqrt{3}}-3\sqrt{2}+\sqrt{6}\)

\(=8-\sqrt{2}\left(\sqrt{3}+1\right)-3\sqrt{2}+\sqrt{6}=8-\sqrt{6}-\sqrt{2}-3\sqrt{2}+\sqrt{6}=8-4\sqrt{2}\)

\(\Rightarrow x^2-8=-4\sqrt{2}\Rightarrow\left(x^2-8\right)^2=32\Rightarrow x^4-16x^2+64=32\Rightarrow x^4-16x^2+32=0\left(ĐPCM\right)\)

NV
22 tháng 7 2021

a.

\(\Leftrightarrow4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(4x^2-2x+1\right)\left(4x^2+2x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2-2x+1}=a>0\\\sqrt{4x^2+2x+1}=b>0\end{matrix}\right.\) ta được:

\(2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)

\(\Leftrightarrow\left(a-\dfrac{b}{\sqrt{3}}\right)\left(2a+\sqrt{3}b\right)=0\)

\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}\)

\(\Leftrightarrow3a^2=b^2\)

\(\Leftrightarrow3\left(4x^2-2x+1\right)=4x^2+2x+1\)

\(\Leftrightarrow...\)

NV
22 tháng 7 2021

b.

\(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)

Lặp lại cách làm câu a

26 tháng 2 2022

cho mk hỏi một chút là đây đích thực có phải lớp 1 ko ak?

Đặt \(x^2=t\left(t\ge0\right)\)

\(\Leftrightarrow t^2-16t+32=0\)

\(\Delta=\left(-16\right)^2-4.32=256-128=128>0\)

\(t_1=\frac{16-\sqrt{128}}{2}=8-4\sqrt{2};t_2=\frac{16+\sqrt{128}}{2}=8+4\sqrt{2}\)

Theo bài ra ta có : 

\(x_0=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}-\sqrt{3\left(2-\sqrt{2+\sqrt{3}}\right)}\)

tịt lun, cái pt căn này chill quá 

11 tháng 8 2020

 ๖²⁴ʱ๖ۣۜTɦủү❄吻༉ Mơn Bạn nha .

P/s : làm nháp thử mn sửa giúp nha ( thực ra em cũng chả hiểu cái gì cả T_T )

Ta có :

\(\left(x_0\right)^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3\left(2-\sqrt{3}\right)}\)

\(\Rightarrow\left(\frac{8-\left(x_0\right)^2}{2}\right)^2=2+\sqrt{3}+3\left(2-\sqrt{3}\right)+2\sqrt{3\left(4-3\right)}=8\)

\(\Rightarrow64-16\left(x_0\right)^2+\left(x_0\right)^4=32\)

\(\Rightarrow\left(x_0\right)^4-16\left(x_0\right)^2+32=0\left(đpcm\right)\)