chứng minh đẳng thức x^2+y^2=(x+y)^2-2xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi vế phải:
VP= (x+y)2 -2xy = x2+2xy+y2-2xy=x2+y2=VT
=> đpcm
=.= hok tốt!!
Ta có:
\(x^2+y^2\)
\(=x^2+2xy+y^2-2xy\)
\(=\left(x+y\right)^2-2xy\)
Hok tốt nhé
Đặt \(xy-12x+15y\)là (*)
Từ phương trình (1) ta có \(x^2-3xy+2y^2+x-y=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y-1\end{cases}}\)
Với \(x=y\)thay vào (2) ta có \(x^2-2x^2+x^2-5x+7x=0\Leftrightarrow x=0\Rightarrow x=y=0\)
Thay \(x=y=0\)vào (*) ta thấy 0.0-12.0+15.0=0(tm)
Với \(x=2y-1\Rightarrow\left(2y-1\right)^2-2\left(2y-1\right)y+y^2-5\left(2y-1\right)+7y=0\)
\(\Leftrightarrow4y^2-4y+1-4y^2+2y+y^2-10y+5+7y=0\)
\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left(y-2\right)\left(y-3\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)
Với \(x=3;y=2\)thay vào (*) ta thấy \(3.2-12.3+15.0=0\left(tm\right)\)
Với \(x=5;y=3\)thay vào (*) ta thấy \(5.3-12.5+15.3=0\left(tm\right)\)
Vậy .....
Ta có :
(x2+y2)2-(2xy)2= x4+2x2y2+y4-4x2y2
= x4-2x2y2+y4= (x2-y2)2 = [(x+y)(x-y)]2= (x+y)2(x-y)2 (đfcm)
Vậy (x2+y2)2-(2xy)2= (x+y)2(x-y)2
Chúc bạn học tốt
\(3x^2+y^2+10x-2xy+26=0\)
\(\left(x-y\right)^2+2x^2+10x+26=0\)
\(\left(x-y\right)^2+\left(2x^2+10x+\frac{5\sqrt{2}}{2}^2\right)+\frac{27}{2}=0\)
\(\left(x-y\right)^2+\left(\sqrt{2}x+\frac{5\sqrt{2}}{2}\right)^2+\frac{27}{2}\ge\frac{27}{2}>0\)
vậy ko có giá trị xy thỏa mã đt
a) \(VT=\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3+x^2+x-x^2-x-1\)
\(=x^3-1=VP\)
b) \(VT=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4=VP\)
c) \(VT=\left(x+y+z\right)^2\)
\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)
\(=x^2+2xy+y^2+2xz+2yz+z^2\)
\(=x^2+y^2+z^2+2xy+2yz+2zx=VP\)
Chúc bạn học tốt.
Ta có
x2 + y2
= (x2 + 2xy + y2) - 2xy
= (x + y)2 - 2xy (đpcm)
Chúc bạn học tốt!!!@@@