Tìm x:
\(2^x+2^{x+4}=544\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^x+2^{x+4}=544\\ \Leftrightarrow2^x.\left(1+2^4\right)=544\\ \Leftrightarrow2^x.17=544\\ \Leftrightarrow2^x=\dfrac{544}{17}=32=2^5\\ Vậy:x=5\)
\(...2^x\left(1+16\right)=544\Rightarrow2^x=544:17=32=2^5\)
\(\Rightarrow x=5\)
\(2x\left(2x-1\right)-\left(2x+5\right)^2=0\)
=>\(4x^2-2x-4x^2-20x-25=0\)
=>-22x-25=0
=>22x+25=0
=>22x=-25
=>\(x=-\dfrac{25}{22}\)
Đáp án C
Đặt:
t = 2 − x + 2 x + 2 ⇔ t 2 = x + 4 + 2 2 − x 2 x + 2 ⇔ x + 2 2 − x 2 x + 2 = t 2 − 4
Với x ∈ − 1 ; 2 ta được:
t ' = − 1 2 2 − x + 1 2 x + 2 = 0 ⇔ x = 1 ⇒ 3 ≤ t ≤ 3
Khi đó bất phương trình trở thành:
t 2 − 4 > m + 4 t ⇔ m < f t = t 2 − 4 t − 4 *
Để (*) có nghiệm trên đoạn 3 ; 3 khi và chỉ khi m < max 3 ; 3 f t = − 7
a) Biến đổi về dạng (x - 3)(x + 2) = 0. Tìm được x ∈ { - 2 ; 3 }
b) Thu gọn về dạng -2x + 3 = 0. Tìm được x = 3 2
1) \(5^{x+1}-5^x=20\Leftrightarrow5^x\left(5-1\right)=20\Leftrightarrow5^x=5\Leftrightarrow x=1\)
2) \(2^x+2^{x+4}=544\Leftrightarrow2^x\left(1+2^4\right)=544\Leftrightarrow2^x=32\Leftrightarrow x=5\)
3) \(4^{2x+1}+4^{2x}=80\Leftrightarrow4^{2x}\left(4+1\right)=80\Leftrightarrow16^x=16\Leftrightarrow x=1\)
4) \(3^{2x+2}+3^{2x+1}=108\Leftrightarrow3^{2x}\left(3^2+3\right)=108\Leftrightarrow9^x=9\Leftrightarrow x=1\)
5) \(7^{x+3}-7^{x+1}=16464\Leftrightarrow7^x\left(7^3-7\right)=16464\Leftrightarrow7^x=49\Leftrightarrow x=2\)
\(2x\left(4x+3\right)+5=x\left(8x+4\right)+1\\ \Leftrightarrow8x^2+6x+5=8x^2+4x+1\\ \Leftrightarrow8x^2-8x^2+6x-4x=1-5\\ \Leftrightarrow2x=-4\\ \Leftrightarrow x=-4:2\\ \Leftrightarrow x=-2\)
Vậy \(x=-2\)
\(2^x+2^{x+4}=544\)
\(\Rightarrow2^x.1+2^x.2^4=544\)
\(\Rightarrow2^x\left(1+2^4\right)=544\)
\(\Rightarrow2^x.17=544\)
\(\Rightarrow2^x=544\div17\)
\(\Rightarrow2x=32=2^5\)
\(\Rightarrow x=5\)
x = 5 bạn nhé