K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có A=B

=>a-b+c+1=a+2

<=>c=b+1

=>đpcm

3 tháng 11 2018

Ta có : A=a-b+c + 1

            B= a+2

mà A=B =>  a-b+c+1 = a+2

                   a-b+c -a = 2-1

                   -b +c = 1

                   c - b = 1

mà 2 số nguyên liên tiếp nhau là 2 số có khonagr cách  = 1

=> c và b là 2 số nguyên liên tiếp

11 tháng 11 2021

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow ab+bc+ca=0\)

\(a+b+c=\sqrt{2019}\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=2019\)

\(\Rightarrow a^2+b^2+c^2=2019\) ( vì \(ab+bc+ca=0\))

11 tháng 11 2021

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\\ A=a^2+b^2+c^2\\ \Leftrightarrow A=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\\ \Leftrightarrow A=\left(\sqrt{2019}\right)^2-2\cdot0=2019\)

2 tháng 3 2022

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2016}\)

\(\Rightarrow\dfrac{bc+ac+bc}{abc}=\dfrac{1}{2016}\)

\(\Rightarrow\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)

\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc=abc\)

\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a=-b\) hay \(b=-c\) hay \(c=-a\)
-Vậy trong ba số a,b,c tồn tại 2 số đối nhau.

27 tháng 2 2017

Theo bất đẳng thức tam giác

\(\Rightarrow\left\{\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{\begin{matrix}b+c-a>0\\c+a-b>0\\a+b-c>0\end{matrix}\right.\)

Áp dụng bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)

\(\Rightarrow\left\{\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{a+c-b}\ge\dfrac{2}{a}\end{matrix}\right.\)

Cộng theo từng vế

\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( đpcm )

27 tháng 2 2017

câu 1: a+b>?

14 tháng 10 2018

\(1)\)\(\frac{\overline{ab}}{b}=\frac{\overline{bc}}{c}=\frac{\overline{ca}}{a}\)

\(\Leftrightarrow\)\(\frac{10a+b}{b}=\frac{10b+c}{c}=\frac{10c+a}{a}\)

\(\Leftrightarrow\)\(\frac{10a}{b}=\frac{10b}{c}=\frac{10c}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{10a}{b}=\frac{10b}{c}=\frac{10c}{a}=\frac{10a+10b+10c}{a+b+c}=\frac{10\left(a+b+c\right)}{a+b+c}=10\)

Do đó : 

\(\frac{10a}{b}=10\)\(\Leftrightarrow\)\(a=b\)

\(\frac{10b}{c}=10\)\(\Leftrightarrow\)\(b=c\)

\(\frac{10c}{a}=10\)\(\Leftrightarrow\)\(c=a\)

\(\Rightarrow\)\(a=b=c\)

\(\Rightarrow\)\(A=\left(a-b\right)\left(b-c\right)\left(c-a\right)+2016=2016\)

\(2)\)\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)

\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)

Do đó : 

\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Leftrightarrow\)\(10a+11b+c=11a+11b\)\(\Leftrightarrow\)\(c=a\)

\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Leftrightarrow\)\(10b+11c+a=11b+11c\)\(\Leftrightarrow\)\(a=b\)

\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Leftrightarrow\)\(10c+11a+b=11c+11a\)\(\Leftrightarrow\)\(b=c\)

\(\Rightarrow\)\(a=b=c\)

\(\Rightarrow\)\(M=\left(\frac{b}{a}+1\right)\left(\frac{c}{b}+1\right)\left(\frac{a}{c}+1\right)+2016=2.2.2+2016=2024\)

Chúc bạn học tốt ~ 

14 tháng 10 2018

Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)

\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

hay \(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Do các tử số trên bằng nhau nên các mẫu số cũng bằng nhau hay \(b+c+d=a+c+d=a+b+d=a+b+c\)

Suy ra a = b =c =d

\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

15 tháng 9 2023

a) Từ giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)

\(\Rightarrow2ab\text{=}2bc+2ca\)

\(\Rightarrow2ab-2bc-2ca\text{=}0\)

Ta xét : \(\left(a+b-c\right)^2\text{=}a^2+b^2+c^2+2ab-2bc-2ca\)

\(\text{=}a^2+b^2+c^2\)

Do đó : \(A\text{=}\sqrt{a^2+b^2+c^2}\text{=}\sqrt{\left(a+b-c\right)^2}\)

\(\Rightarrow A\text{=}a+b-c\)

Vì a;b;c là các số hữu tỉ suy ra : đpcm

b) Đặt : \(a\text{=}\dfrac{1}{x-y};b\text{=}\dfrac{1}{y-x};c\text{=}\dfrac{1}{z-x}\)

Do đó : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)

Ta có : \(B\text{=}\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)

Từ đây ta thấy giống phần a nên :

\(B\text{=}a+b-c\)

\(B\text{=}\dfrac{1}{x-y}+\dfrac{1}{y-z}-\dfrac{1}{z-x}\)

Suy ra : đpcm.

Mình bổ sung đề phần b cần phải có điều kiện của x;y;z nha bạn.

NV
28 tháng 9 2019

\(a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\ge\frac{\left(\frac{\left(a+b+c\right)^2}{3}\right)^2}{3}=\frac{\left(a+b+c\right)^4}{27}=\frac{1}{27}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

NV
28 tháng 9 2019

Ở bài trên mình làm ko phải là Svac mà là BĐT cổ điển suy ra từ hằng đẳng thức

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) \(\forall a;b;c\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

27 tháng 1 2022

Ta có: \(a^2+b^2+c^2=1\)

⇒ \(\left\{{}\begin{matrix}\left|a\right|\text{≤}1\\\left|b\right|\text{≤}1\\\left|c\right|\text{≤}1\end{matrix}\right.\)

Mặt khác:

\(a^2+b^2+c^2=a^3+b^3+c^3=1\)

⇒ \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)

Vì \(\left\{{}\begin{matrix}1-a\text{≥}0\\1-b\text{≥}0\\1-c\text{≥}0\end{matrix}\right.\) 

⇒ \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\text{≥}0\)

Dấu "=" ⇔ 1 số bằng 1 và 2 số còn lại bằng 0

⇒ \(S=1\)