Cho A= x3-x
B=x-1
1. Phân tích đa thức thành nhân tử
2. Tính A : B
3. Tìm x để A= 0
4. CMR: A chia hết cho 6 với mọi x thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-9x^2+26x-24\)
\(=x^3-4x^2-5x^2+20x+6x-24\)
\(=\left(x-4\right)\left(x^2-5x+6\right)\)
\(=\left(x-4\right)\left(x-2\right)\left(x-3\right)\)
Ta có: A=x^2 +6x-7 =>A= (x^2 -x)+(7x-7)=> A= x(x-1) +7(x-1)=>A=(x+7)(x-1)
Ta có: C= x^4 +x^3 +2x^2 -x+3
=> C= (x^4 +x) +(x^3 +1) +2.(x^2 -x+1)
=>C= x(x^3 +1) + (x^3 +1) +2.(x^2 -x+1)
=>C=x(x+1)(x^2-x+1) +(x+1)(x^2-x+1) +2.(x^2-x+1)
=>C=(x^2-x+1)(x^2 +x+x+1+2)
=>C=(x^2 -x+1)(x^2 +2x+3)
ta có: B= \(x^3\left(x^2-7\right)^2-36x\)
=>B=\(x\left[x^2.\left(x^2-7\right)^2-6^2\right]\)
=>B=\(x\left[x\left(x^2-7\right)-6\right].\left[x\left(x^2-7\right)+6\right]\)
=>B=\(x\left(x^3-7x-6\right)\left(x^3-7x+6\right)\)
=>B=\(x\left[\left(x-3\right)\left(x+1\right)\left(x+2\right)\right].\left[\left(x+3\right)\left(x-2\right)\left(x-1\right)\right]\)
2) Ta có: M=n^3 (n^2 -7)^2 -36n
=>M=(n-3)(n-2)(n-1)n(n+1)(n+2)(n+3)
Như vậy M là tích của 7 số liên tiếp
=> trong đó có 1 số chia hết cho 2 ; 1 số chia hết cho 3 ; 1 số chia hết cho5 ; 1 số chia hết cho7
Mà 2;3;5;7 nguyên tố cùng nhau nên M \(⋮\)(2.3.5.7) hay M\(⋮\) 210
Vậy với mọi n thuộc N thì M chia hết cho 210
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
1: A=x(x^2-1)=x(x-1)(x+1)
2: A/B=x(x+1)
3: Để A=0 thì x(x-1)(x+1)=0
hay \(x\in\left\{0;1;-1\right\}\)
4: Vì x-1;x;x+1 là ba số liên tiếp
nên x(x-1)(x+1) chia hết cho 3!
=>A chia hết cho 6