tìm \(n\varepsilonℕ^∗\)để \(\sqrt{\frac{4n-2}{n+5}}\varepsilonℚ\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\frac{3n+2}{n}=3+\frac{2}{n}\)
A là số nguyên <=> n \(\in\)Ư ( 2 ) = { -2; -1; 1; 2 }
b) Thiếu điều kiện n là số nguyên dương.
Xét hiệu: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{b\left(a+n\right)-a\left(b+n\right)}{b\left(b+n\right)}=\frac{ba+bn-ab-an}{b\left(b+n\right)}\)
\(=\frac{bn-an}{b\left(b+n\right)}=\frac{n\left(b-a\right)}{b\left(b+n\right)}\)
TH1: b > a
=> b - a > 0
=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}>0\)
=> \(\frac{a+n}{b+n}>\frac{a}{b}\)
TH2: b < a
=> b - a < 0
=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}< 0\)
=> \(\frac{a+n}{b+n}< \frac{a}{b}\)
TH1: b = a
=> b - a = 0
=> \(\frac{n\left(b-a\right)}{b\left(b+n\right)}=0\)
=> \(\frac{a+n}{b+n}=\frac{a}{b}\)
Kết luận:...
a)Để A nguyên thì (3n+2)chia hết cho n mà 3n chia hết cho n nên 2 phải chia hết cho n =>n\(\varepsilon\){2;1;-1;-2}
b)\(\frac{a+n}{b+n}\)=\(\frac{a}{b}\)+1>\(\frac{a}{b}\)=> Điều cần chứng minh
Chữ số tận cùng của 72^4n+1thì mk ko bt
Nhưng chữ số tận cùng của 62019 thì bằng 6 nha :)))
Hok tốt