Tìm x , biết:
8x3 + 8x2 + 2x =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3x2 - 8x2 - 2x+3=0
2x(3-8) - 2x+3=0
2x5 - 2x+3=0
2x5 - 2x=0-3=
2x5 - 2x=-3
2x(5-x)=-3
5-x=-3/2
5-x=1,5
x=5-1,5
x=3,5
`@` `\text {Ans}`
`\downarrow`
`a,`
`(2x - 1)^2 - 25 = 0`
`<=> (2x - 1)^2 = 25`
`<=> (2x - 1)^2 = (+-5)^2`
`<=>`\(\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy, `S = {-2; 3}`
`b,`
`8x^3 - 50x = 0`
`<=> x(8x^2 - 50) = 0`
`<=>`\(\left[{}\begin{matrix}x=0\\8x^2-50=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\8x^2=50\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\x^2=\dfrac{25}{4}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\x=\pm\dfrac{5}{2}\end{matrix}\right.\)
Vậy, `S = {-5/2; 0; 5/2}.`
a) (2x - 1)² - 25 = 0
(2x - 1)² - 5² = 0
(2x - 1 - 5)(2x - 1 + 5) = 0
(2x - 6)(2x + 4) = 0
2x - 6 = 0 hoặc 2x + 4 = 0
*) 2x - 6 = 0
2x = 6
x = 3
*) 2x + 4 = 0
2x = -4
x = -2
Vậy x = -2; x = 3
b) 8x³ - 50x = 0
2x(4x² - 25) = 0
2x[(2x)² - 5²] = 0
2x(2x - 5)(2x + 5) = 0
2x = 0 hoặc 2x - 5 = 0 hoặc 2x + 5 = 0
*) 2x = 0
x = 0
*) 2x - 5 = 0
2x = 5
x = 5/2
*) 2x + 5 = 0
2x = -5
x = -5/2
Vậy x = -5/2; x = 0; x = 5/2
Bài 1:
a: \(8x^3-2x=2x\left(4x^2-1\right)=2x\left(2x-1\right)\left(2x+1\right)\)
c: \(-5m^3\left(m+1\right)+m+1=\left(m+1\right)\left(-5m^3+1\right)\)
a: Ta có: \(40x^4+5x=0\)
\(\Leftrightarrow5x\left(8x^3+1\right)=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
b: Ta có: \(8x^2-2x-1=0\)
\(\Leftrightarrow8x^2-4x+2x-1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
a: Ta có: \(2\left(x-2\right)^3=2-x\)
\(\Leftrightarrow2\left(x-2\right)^3+x-2=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
b: ta có: \(8x^3-72x=0\)
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
c: Ta có: \(2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow2x+3=0\)
hay \(x=-\dfrac{3}{2}\)
a: Ta có: \(x\left(2-x\right)+\left(x^2+x\right)=7\)
\(\Leftrightarrow2x-x^2+x^2+x=7\)
\(\Leftrightarrow3x=7\)
hay \(x=\dfrac{7}{3}\)
b: Ta có: \(\left(2x+1\right)^2-x\left(4-5x\right)=17\)
\(\Leftrightarrow4x^2+4x+1-4x+5x^2=17\)
\(\Leftrightarrow9x^2=16\)
\(\Leftrightarrow x^2=\dfrac{16}{9}\)
hay \(x\in\left\{\dfrac{4}{3};-\dfrac{4}{3}\right\}\)
Lời giải:
a. PT $\Leftrightarrow (3-2x-3-2x)(3-2x+3+2x)=8$
$\Leftrightarrow -4x.6=8$
$\Leftrightarrow -24x=8\Leftrightarrow x=\frac{-1}{3}$
b.
$9x^5-72x^2=0$
$\Leftrightarrow 9x^2(x^3-8)=0$
$\Leftrightarrow x^2=0$ hoặc $x^3=8$
$\Leftrightarrow x=0$ hoặc $x=2$
c.
$5x^4-8x^2-4=0$
$\Leftrightarrow 5x^4-10x^2+2x^2-4=0$
$\Leftrightarrow 5x^2(x^2-2)+2(x^2-2)=0$
$\Leftrightarrow (5x^2+2)(x^2-2)=0$
$\Leftrightarrow 5x^2+2=0$ (loại) hoặc $x^2-2=0$ (chọn)
$\Leftrightarrow x=\pm \sqrt{2}$
d.
PT $\Leftrightarrow [x^2(x+1)-4(x+1)]:(x-2)=0$
$\Leftrightarrow (x^2-4)(x+1):(x-2)=0$
$\Leftrightarrow (x-2)(x+2)(x+1):(x-2)=0$
$\Leftrightarrow (x+2)(x+1)=0$
$\Leftrightarrow x+2=0$ hoặc $x+1=0$
$\Leftrightarrow x=-2$ hoặc $x=-1$
a: Ta có: \(\left(3-2x\right)^2-\left(3+2x\right)^2=8\)
\(\Leftrightarrow9-12x+4x^2-9-12x-4x^2=8\)
\(\Leftrightarrow-24x=8\)
hay \(x=-\dfrac{1}{3}\)
b: Ta có: \(9x^5-72x^2=0\)
\(\Leftrightarrow9x^2\left(x^3-8\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(\dfrac{7}{2}\times\dfrac{3}{4}+\dfrac{17}{8}\times\dfrac{2}{3}+\dfrac{3}{4}\times\dfrac{1}{2}+\dfrac{7}{8}\times\dfrac{3}{3}\)
\(=\dfrac{7\times3}{2\times4}+\dfrac{17\times2}{8\times3}+\dfrac{3\times1}{4\times2}+\dfrac{7}{8}\times1\)
\(=\dfrac{21}{8}+\dfrac{17}{12}+\dfrac{3}{8}+\dfrac{7}{8}\)
\(=\left(\dfrac{21}{8}+\dfrac{3}{8}+\dfrac{7}{8}\right)+\dfrac{17}{12}\)
\(=\dfrac{31}{8}+\dfrac{17}{12}\)
\(=\dfrac{31\times3}{8\times3}+\dfrac{17\times2}{12\times2}\)
\(=\dfrac{93}{24}+\dfrac{34}{24}\)
\(=\dfrac{127}{24}\)
\(8x^3+8x^2+2x=0\)
\(\Rightarrow2x\left(4x^2+4x+1\right)=0\)
\(\Rightarrow2x\left[\left(2x\right)^2+2.x.2+1^2\right]=0\)
\(\Rightarrow2x\left(2x+1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\\left(2x+1\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy........................................
cảm ơn