tính giá trị biểu thức
B= 1/4+1/12+1/36+...+1/324
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\)
\(3A=3\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}\right)\)
\(3A=\frac{3}{4}+\frac{3}{12}+\frac{3}{36}+\frac{3}{108}+\frac{3}{324}+\frac{3}{927}\)
\(3A=\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\)
\(2A=3A-A\)
\(2A=\left(\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\right)-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}\right)\)
\(2A=\frac{3}{4}-\frac{1}{927}\)
\(2A=\frac{729-1}{972}=\frac{728}{972}=\frac{182}{243}\)
\(A=\frac{182}{243}:\frac{1}{2}\)
\(A=\frac{364}{243}\)
\(C=\left(1-2-3-4\right)+...+\left(197-198-199-200\right)\)
=-8x25=-200
\(D=-\left(11+13+...+99\right)+\left(10+12+...+98\right)\)
=(-1)+(-1)+...+(-1)
=-1x45=-45
Ta có:
\(x^2-2018x+1=0\)
\(\Leftrightarrow x^2+1=2018x\)
Do đó
\(B=\frac{x^4+x^2+1}{x^2}=\frac{\left(x^4+2x^2+1\right)-x^2}{x^2}=\frac{\left(x^2+1\right)^2-x^2}{x^2}=\frac{\left(x^2+x+1\right)\left(x^2-x+1\right)}{x^2}\)
\(\Leftrightarrow B=\frac{\left(2018x+x\right)\left(2018x-x\right)}{x^2}=\frac{2019x\cdot2017x}{x^2}=2019\cdot2017\)
B=x2y2+xy+x3+y3
Thay x=-1, y=3 ta có:
B=x2y2+xy+x3+y3
=(-1)2.32+(-1).3+(-1)3+33
= 1.9-3-1+27
= 9-3-1+27
= 32
Câu a :
\(\dfrac{5}{12}+\dfrac{3}{4}+\dfrac{1}{3}\\ =\dfrac{5}{12}+\dfrac{9}{12}+\dfrac{4}{12}=\dfrac{3}{2}\)
câu b :
\(\dfrac{1}{4}+\dfrac{3}{7}+\dfrac{11}{14}\\ =\dfrac{7}{28}+\dfrac{12}{28}+\dfrac{22}{28}=\dfrac{41}{28}\)
câu c :
\(\dfrac{1}{4}+\dfrac{3}{12}+\dfrac{12}{36}\\ =\dfrac{3}{12}+\dfrac{3}{12}+\dfrac{4}{12}\\ =\dfrac{10}{12}=\dfrac{5}{6}\)
a: \(P=\dfrac{x^2+x-x^2+x+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x-1}\)
\(B=\left(1+\dfrac{1}{100}\right)\times\left(1+\dfrac{1}{99}\right)\times....\times\left(1+\dfrac{1}{3}\right)\times\left(1+\dfrac{1}{2}\right)\)
\(B=\dfrac{101}{100}\times\dfrac{100}{99}\times...\times\dfrac{4}{3}\times\dfrac{3}{2}\)
\(B=\dfrac{101\times100\times....\times4\times3}{100\times99\times....\times3\times2}\)
\(B=\dfrac{101}{2}\)
\(\Rightarrow B=\left(\dfrac{100}{100}+\dfrac{1}{100}\right)\times\left(\dfrac{99}{99}+\dfrac{1}{99}\right)\times...\times\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\times\left(\dfrac{2}{2}+\dfrac{1}{2}\right)\)
\(B=\dfrac{101}{100}\times\dfrac{100}{99}\times...\times\dfrac{4}{3}\times\dfrac{3}{2}\)
\(B=\dfrac{101}{2}\)( triệt tiêu các mẫu, tử giống nhau)
Ta có:
\(B=4x\left(2x+y\right)+2y\left(2x+y\right)-y\left(y+2x\right)\)
\(\Leftrightarrow B=\left(4x+2y-y\right)\left(2x+y\right)=\left(4x+y\right)\left(2x+y\right)=\left(4.\dfrac{1}{2}+\dfrac{-3}{5}\right)\left(2.\dfrac{1}{2}+\dfrac{-3}{5}\right)=\dfrac{14}{25}\)