cho 3 số khác nhau từng đôi 1 và khác 0
\(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)
chứng minh
\(\frac{b+c}{a}\)=\(\frac{a+c}{b}\)=\(\frac{a+b}{c}\)
không phụ thuộc vào các giá trị của a,b,c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)
\(\Rightarrow b+c=2a;a+c=2b;a+b=2c\)
Bằng cách rút \(b\) từ đẳng thức thứ nhất thay vào đẳng thức thứ hai ta đễ dàng suy ra được \(a=b=c\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
Lười quá, bn tham khảo nhé:
Bấm vô đây
Câu hỏi của Nguyen Thi Hoai Linh - Toán lớp 7 - Học toán với OnlineMath
Vì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)
\(\Rightarrow b+c=2a;a+c=2b;a+b=2c\)
Bằng cách rút \(b\) từ đẳng thức thứ nhất thay vào đẳng thức thứ hai ta đễ dàng suy ra được \(a=b=c\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}\left(1\right)\)
Xét 2 trường hợp:
\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+\left(-1\right)+\left(-1\right)=-3\), không phụ thuộc vào giá trị của a; b; c (đpcm)
Từ (1) ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\) \(\Rightarrow\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}\)
\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\), không phụ thuộc vào giá trị của a; b; c (đpcm)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
Ta có :
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+b+a}=\frac{1}{2}\)
\(\Rightarrow\begin{cases}2a=b+c\\2b=c+a\\2c=b+a\end{cases}\)
Thay vào M ta có :
\(A=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
=> M = 6 \(\forall a;b;c\)
Vậy giá trị của M không phụ thuộc vào giá trị của các biến a ; b ; c
Ta có : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)
Xét 2 trường hợp :
TH1 : Nếu a + b + c = 0 thì \(\hept{\begin{cases}b+c=-a\\a+b=-c\\a+c=-b\end{cases}}\).Ta có :\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=-1+-1+-1=-3\). Không phụ thuộc vào giá trị của a ; b ; c
TH2 : Nếu \(a+b+c\ne0\)thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)
Có : \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\) -Không phụ thuộc vào các giá trị a ; b ; c (2)
Từ (1) và (2)
=> ĐPCM
@Phạm Tuấn Đạt cho 3 số đôi 1 khác 0 =>a+b+c khác 0 => ko cần phải xét
Ta có
a/(b+c)=b/(a+c)=c/(a+b)
=>(b+c)/a=(a+c)/b=(a+b)/c=(b+c+a+c+a+b)/(a+b+c)=2(a+b+c)/(a+b+c)=2
=>(b+c)/(a+(a+b)/c+(a+b)/c=2+2+2=6
=>(b+c)/a+(a+b)/c+(a+b)/c không phụ thuộc vào giá trị của a,b,c (đpcm)
Vậy............
Nhớ thanks nha
1.Đặt P = ( a-b) / c + ( b-c)/a + ( c-a ) /b
Nhân abc với P ta được ; P abc = ab( a-b) + bc ( b-c) + ac ( c-a )
= ab( a-b) + bc ( a-c + b-a ) + ac ( a-c)
= ab( a-b) - bc ( a-b) - bc( c-a) + ca ( c-a)
= b ( a-b)(a-c) - c ( a-b)(c-a)
= ( b-c)(a-b)(a-c)
=> P = (b-c)(a-b)(a-c) / abc
Xét a + b +c = 0 ta được a + b = -c ; c+a = -b , b+c = -a
Đặt Q = c/(a-b) + a/ ( b-c) + b/ ( c-a)
Nhân ( b-c)(c-b)(a-c) . Q ta có : Q = c(c-a)(b-c) + a( a-b)(c-a) + b(a-b)(b-c)
Q = c(c-a)(b-c) + (a-b)(-b-c)(c-a) +b( a-b)(b-c)
Q = c(c-a)(b-c) - b(a-b)(c-a) + b(a-b)(b-c) - c( a-b)(c-a)
Q = c(c-a)( -a+2b-c) + b(a-2c+b)(a-b)
Q = - 3bc(a-b) + 3bc(c-a)
Q = 3bc ( b+c-2a)
Q = -9abc
Suy ra => Q = 9abc / (a-b)(b-c)(c-a)
Vây ta nhân P*Q = ( b-c)(a-b)(a-c) / abc * 9abc / ( a-b)(b-c)(c-a) ( gạch những hạng tử giống nhau đi)
P*Q = 9 ( đpcm)
**************************************...
Chúc bạn học giỏi và may mắn
ta có : các ước tự nhiên của p^4 là:1,p,p2,p3,p4
Giả sử tồn tại 1 số p sao cho tổng các ước của p^4 là 1 số chính phương ta có:
1+p+p2+p3+p4=k2
đến đây rồi biến đổi tiếp,dùng phương pháp chặn 2 đầu là ra
Chúc hok tốt
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\)\(\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}\)
\(\Rightarrow\)\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
...
Chúc bạn học tốt ~
Cách easy nhất:
Đặt \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=k\Rightarrow a=k\left(b+c\right);b=k\left(a+c\right);c=k\left(a+b\right)\)
Thay vào,ta có:\(\frac{b+c}{a}=\frac{b+c}{k\left(b+c\right)}=\frac{1}{k}\) (1)
Tương tự với hai đẳng thức còn lại,được: \(\frac{a+c}{b}=\frac{1}{k}\) (2)
và \(\frac{a+b}{c}=\frac{1}{k}\) (3)
Từ (1),(2) và (3) ta có: \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\left(=\frac{1}{k}\right)^{\left(đpcm\right)}\)