K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

\(\left(\frac{3}{1.3}+\frac{3}{3.5}+.......+\frac{3}{97.99}\right).\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow[\frac{3}{2}.(\frac{2}{1.3}+\frac{2}{3.5}+.......+\frac{2}{97.99})].\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow[\frac{3}{2}.(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{97}-\frac{1}{99})].\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow[\frac{3}{2}.(1-\frac{1}{99})].\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow\left(\frac{3}{2}.\frac{98}{99}\right).\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow\frac{49}{33}.\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow\frac{49}{33}.2x+\frac{49}{33}=x+\frac{1}{33}\)

\(\Rightarrow\frac{98}{33}.x+\frac{49}{33}=x+\frac{1}{33}\)

\(\Rightarrow\frac{98}{33}.x-x=\frac{1}{33}-\frac{49}{33}\)

\(\Rightarrow\frac{65}{33}.x=\frac{-16}{11}\)

\(\Rightarrow x=\frac{-16}{11}:\frac{65}{33}\)

\(\Rightarrow x=\frac{-48}{65}\)

Vậy \(x=\frac{-48}{65}\)

6 tháng 5 2018

\(\left(1-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{99}\right)-x\)\(=\frac{-100}{99}\)

\(\left(1-\frac{1}{99}\right)-x=\frac{-100}{99}\)

\(\frac{98}{99}-x=\frac{-100}{99}\)

\(x=\frac{98}{99}-\left(-\frac{100}{99}\right)\)

\(x=\frac{198}{99}=2\)

CHÚC BN HOK TỐT!

ĐÚNG THÌ K CHO MK NHA!

6 tháng 5 2018

(...) là mở đóng ngoặc đơn nha

31 tháng 1 2017

để ý 1+1/x(x+2)=(x2+2x+1)/x(x+2)=(x+1)2/x(x+2)

+ 1+1/1.3=22/1.3 ;...... 

28 tháng 1 2019

\(\Rightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{99.100}\right).y=\frac{49}{100}\Leftrightarrow\left(\frac{99.50-1}{99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{99.50-1}{99}\right).y=49\Leftrightarrow\left(99.50-1\right).y=99.49\Rightarrow y=\frac{99.49}{99.50-1}\)

11 tháng 5 2020

ảnh đại diện đẹp thế lấy ở đâu

19 tháng 2 2017

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}=\frac{1}{k}\Rightarrow k=2\)

19 tháng 2 2017

k=2

chuan 100%ok

27 tháng 6 2015

\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+2\right)}\)

\(\Rightarrow\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{1.2.3}+...+\frac{1}{98.99.100}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Rightarrow k=2\)

18 tháng 4 2016

ý là you là học sinh giỏi chứ j
 

18 tháng 4 2016

Nó thì cô giải cho rồi, nó biết là phải

\(\left(X+\frac{1}{1.3}\right)+\left(X+\frac{1}{3.5}\right)+...+\left(X+\frac{1}{23.25}\right)=11.X+\)\(\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)

\(\Leftrightarrow12X+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)+11X\)\(+\frac{\left(1+\frac{1}{3}+...+\frac{1}{81}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)}{2}\)

\(\Leftrightarrow X+\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{23}+\frac{1}{23}-\frac{1}{25}\right)=\frac{242}{243}:2\)

\(\Leftrightarrow X+\frac{12}{25}=\frac{121}{243}\)

\(\Leftrightarrow X=\frac{109}{6075}\)

Vậy X=109/6075

Chắc Sai kết quả chứ công thức đúng nha!!!...

Fighting!!!...

28 tháng 5 2019

Đặt: 

 \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{25-23}{23.25}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}=1-\frac{1}{25}=\frac{24}{25}\)

=> \(A=\frac{12}{25}\)

Đặt \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)

   \(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)

=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)=1-\frac{1}{3^5}=\frac{242}{243}\)

=> \(2B=\frac{242}{243}\Rightarrow B=\frac{121}{243}\)

Giải phương trình:

\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)\)

                        \(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{242}\right)\)

                                                                            \(12x+\frac{12}{25}=11x+\frac{121}{243}\)

                                                                             \(12x-11x=\frac{121}{243}-\frac{12}{25}\)

                                                                                                  \(x=\frac{109}{6075}\)