K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

A. \(x^2-2mx+m^2-2m+1=0\)

Ta có: Δ = \(b^2-4ac\)

= \(\left(-2m\right)^2-4.\left(m^2-2m+1\right)\)

= \(4m^2-4m^2+8m-4\)

= 8m - 4

+Nếu Δ > 0

⇔ 8m - 4 > 0

⇔ m > \(\dfrac{1}{2}\)

Phương trình có hai nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2m+\sqrt{8m-4}}{2}=m+\sqrt{2m-1}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2m-\sqrt{8m-4}}{2}=m-\sqrt{2m-1}\)

+Nếu Δ =0

⇔ 8m - 4 = 0

⇔ m = \(\dfrac{1}{2}\)

phương trình có nghiệm kép:

\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{2m}{2}=m\) = \(\dfrac{1}{2}\)

+Nếu Δ < 0

⇔ 8m - 4 < 0

⇔ m< \(\dfrac{1}{2}\)

Phương trình vô nghiệm

B. \(x^2+\left(m-1\right)x-2m^2+m=0\)

Ta có: Δ = \(b^2-4ac\)

= \(\left(m-1\right)^2-4\left(-2m^2+m\right)\)

= \(m^2-2m+1+8m^2-4m\)

= \(9m^2-6m+1\)

+Nếu Δ > 0

\(9m^2-6m+1\) > 0

⇔ m ≠ \(\dfrac{1}{3}\)

Phương trình có hai nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-m+1+\sqrt{9m^2-6m+1}}{2}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-m+1-\sqrt{9m^2-6m+1}}{2}\)

+Nếu Δ = 0

\(9m^2-6m+1=0\)

⇔ m = \(\dfrac{1}{3}\)

Phương trình có nghiệm kép:

\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{-\left(m-1\right)}{2}=\dfrac{-\left(\dfrac{1}{3}-1\right)}{2}=\dfrac{1}{3}\)

+Nếu Δ < 0

\(9m^2-6m+1< 0\)

⇔ m ∈ ∅

23 tháng 11 2021

\(1,\\ a,ĐK:m\ne1\\ \Delta=49+48\left(m-1\right)=48m+1\\ \text{PT vô nghiệm }\Leftrightarrow48m+1< 0\Leftrightarrow m< -\dfrac{1}{48}\\ \text{PT có nghiệm kép }\Leftrightarrow48m+1=0\Leftrightarrow m=-\dfrac{1}{48}\\ \text{PT có 2 nghiệm phân biệt }\Leftrightarrow48m+1>0\Leftrightarrow m>-\dfrac{1}{48};m\ne1\)

\(b,\Delta=4\left(m-1\right)^2+4\left(2m+1\right)=4m^2+8>0,\forall m\\ \text{Vậy PT có 2 nghiệm phân biệt với mọi m}\\ 2,\\ \text{PT có 2 nghiệm phân biệt }\)

\(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+4>0\\ \Leftrightarrow8m+8>0\\ \Leftrightarrow m>-1\)

1) Thay m=1 vào phương trình, ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1

1) Bạn tự làm

2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\) 

a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)

   Vậy ...

b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

            \(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)

  Vậy ... 

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

4 tháng 8 2017

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán 

  

25 tháng 6 2023

PT nhận \(x=1\) là nghiệm 

Thay \(x=1\) vào trong PT ta tìm được m:

\(x^2-2mx+2m^2-m-6=0\)

\(\Rightarrow1^2-2\cdot m\cdot1+2m^2-m-6=0\)

\(\Leftrightarrow1-2m+2m^2-m-6=0\)

\(\Leftrightarrow2m^2-3m-5=0\)

\(\Leftrightarrow2m^2+2m-5m-5=0\)

\(\Leftrightarrow2m\left(m+1\right)-5\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(2m-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\2m-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{5}{2}\end{matrix}\right.\)

Vậy PT nhận \(x=1\) là nghiệm khi \(m=-1\) hoặc \(m=\dfrac{5}{2}\)

25 tháng 6 2023

Thay \(x=1\) vào pt \(x^2-2mx+2m^2-m-6=0\)

\(\Rightarrow1^2-2m.1+2m^2-m-6=0\)

\(\Rightarrow-3m+2m^2-5=0\)

\(\Rightarrow2m^2-3m-5=0\)

\(\Delta=b^2-4ac=\left(-3\right)^2-4.2.\left(-5\right)=49>0\)

\(\Rightarrow\) Pt có 2 nghiệm \(m_1,m_2\)

\(\left\{{}\begin{matrix}m_1=\dfrac{3+\sqrt{49}}{2.2}=\dfrac{5}{2}\\m_2=\dfrac{3-\sqrt{49}}{2.2}=-1\end{matrix}\right.\)

Vậy \(m=\dfrac{5}{2},m=-1\) thì pt có 1 nghiệm \(x=1\)

26 tháng 11 2021

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)

 

 

 

8 tháng 8 2023

PT vô nghiệm <=> \(\Delta'< 0\)

<=> \(\left(m+1\right)^2-2m^2-2m-1< 0\)

<=> \(m^2+2m+1-2m^2-2m-1< 0\)

<=> \(-m^2< 0\)

\(\Leftrightarrow m\ne0\)

Δ=(2m+2)^2-4(2m^2+2m+1)

=4m^2+8m+4-8m^2-8m-4

=-4m^2

Để phương trình vô nghiệm thì -4m^2<0

=>m^2>0

=>m<>0

3 tháng 3 2016

bài này sử dụng định lí vi-ét nha