Cho △ABC, có AB = AC. Kẻ tia phân giác góc A cắt BC tại M. Chứng minh rằng:
a) M là trung điểm của BC
b) AM ⊥ BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABM và tam giác ACM có:
AM là tia phân giác của góc A hay \(\widehat{A_1}=\widehat{A_2}\) (gt)
AB = AC (gt) ; AM (cạnh chung)
Do vậy \(\Delta ABM=\Delta ACM\) (c.g.c)
Do đó \(BM=CM\) (hai cạnh tương ứng)
Suy ra M là trung điểm của BC
b) \(\Delta ABM=\Delta ACM\Rightarrow\widehat{M_1}=\widehat{M_2}\) hay \(\frac{\widehat{M_1}}{1}=\frac{\widehat{M_2}}{2}\)
Lại có: \(\widehat{M_1}+\widehat{M_2}=180^o\) (kề bù).Theo t/c dãy tỉ số bằng nhau:
\(\frac{\widehat{M_1}}{1}=\frac{\widehat{M_2}}{1}=\frac{\widehat{M_1}+\widehat{M_2}}{1+1}=\frac{180^o}{2}=90^o\)
hay \(\widehat{M_1}=\widehat{M_2}=90^o\Rightarrow AM\perp BC\) (do tia phân giác góc A cắt BC tại M)
Hình vẽ
Bài làm
a) Vì AM là tia phân giác của \(\widehat{BAC}\)
=> \(\widehat{BAM}=\widehat{MAC}\)
Xét tam giác ABC
Ta có: AB=AC ( giả thiết )
\(\widehat{BAM}=\widehat{MAC}\)( Vì AM là tia phân giác của góc BAC )
AM là cạnh chung
=> Tam giác BAM bằng tam giác MAD ( c.g.c )
=> BM=MC ( Vì tam giác BAM=tam giác MAD )
=> M là trung điểm của BC ( đpcm )
b) Vì AM là tia phân giác của góc A
BM=MC
Mà M là trung điểm của BC
=> AM vuông góc với BC. ( đpcm )
# Chúc bạn học tốt #
1.Lấy F trên AC sao cho AB = AF mà AB < AC => AF < AC => F nằm giữa A,C
\(\Delta ADB,\Delta ADF\)có AD chung ; AB = AF ;\(\widehat{A_1}=\widehat{A_2}\)(AD là phân giác góc BAC)\(\Rightarrow\Delta ADB=\Delta ADF\left(c.g.c\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{D_2}\); DB = DF mà\(\widehat{F_1}>\widehat{D_1};\widehat{D_2}>\widehat{C}\)(\(\widehat{F_1};\widehat{D_1}\)lần lượt là góc ngoài\(\Delta ADF,\Delta ADC\))nên\(\widehat{F_1}>\widehat{C}\)
\(\Delta DFC\)có\(\widehat{F_1}>\widehat{C}\)nên DC > DF = DB.Vậy BD < CD
2.Theo chứng minh câu 1,ta được BD < CD
\(\Rightarrow BC=BD+CD=2BD+CD-BD\Rightarrow2BD< BC\Rightarrow BD< \frac{BC}{2}\left(=BM\right)\)
=> D nằm giữa B,M => AD nằm giữa AB,AM (1)
\(\Delta ABC\)có AB < AC nên\(\widehat{B}>\widehat{C}\)mà\(\widehat{BAH}=90^0-\widehat{B};\widehat{CAH}=90^0-\widehat{C}\)(vì\(\Delta AHB,\Delta AHC\)vuông tại H)
\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)
\(\Rightarrow\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=2\widehat{BAH}+\widehat{CAH}-\widehat{BAH}\Rightarrow2\widehat{BAH}< \widehat{BAC}\Rightarrow\widehat{BAH}< \frac{\widehat{BAC}}{2}\left(=\widehat{BAD}\right)\)
=> AH nằm giữa AB,AD (2).Từ (1) và (2),ta có đpcm
a: Ta có: ΔAMB cân tại A
mà AE là đường trung tuyến
nên AE là đường phân giác
b: Ta có: ΔAMB cân tại A
mà AE là đường trung tuyến
nên AE là đường cao
a, Ax là phân giác của góc BAC (gt)
K thuộc Ax
KE _|_ AB (gt); KF _|_ AC (gt)
=> KE = KF (định lí) (1)
K thuộc đường trung trực của BC (gt)
=> KB = KC (Định lí)
xét tam giác EKB và tam giác FKC có : góc BEK = góc KFC = 90
=> tam giác EKB = tam giác FKC (ch-cgv)
=> BE = CF (đn)
a ) Ta có Ax là đường trung trực của tam giác ABC => Ax là đường trung trực của tam giác ABC
Xét tam giác BEK vuông tại E và tam giác CFK vuông tại F ta có :
BK = KC ( cmt )
BKE = CKF ( đối đỉnh )
=> Tam giác BEK = tam giác CFK
=> BE = CF ( 2 cạnh tương ứng )
mik chỉ làm đc câu a thoi maf hình như đề bị sai á
a) Xét ΔAMB và ΔAMC có:
AB=AC(gt)
\(\widehat{BAM}=\widehat{CAM}\)(AM là tia phân giác góc A)
AM chung
=> ΔAMB=ΔAMC(c.g.c)
b) Ta có: ΔAMB=ΔAMC(cmt)
=> \(\widehat{AMB}=\widehat{AMC}\)
Mà 2 góc này là 2 góc kề bù
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\)
=> AM⊥BC
c) Ta có: ΔAMB=ΔAMC(cmt)
=> BM=MC( 2 cạnh tương ứng)
=> M là trung điểm BC
Xét Δ ABM và Δ ACM có :
góc BAM = góc CAM ( do AM là tia phân giác góc BAC )
Am là cạnh chung
Cạnh AB = AC ( gt)
=> Δ ABM = Δ ACM
=> Cạnh BM = CM ( hai cạnh tương ứng )
=> M là trung điểm của BC
b, Do Δ ABM = Δ ACM ( CM a )
=> góc AMB = góc AMC ( hai góc tương ứng )
mà góc AMB + góc AMC = 180\(^0\) ( hai góc kề bù )
=> góc AMB = góc AMC =180\(^0\) : 2 = 90\(^0\)
=> AM ⊥ BC
ABCM Xét Δ ABM và Δ ACM có :
góc BAM = góc CAM ( do AM là tia phân giác góc BAC )
Am là cạnh chung
Cạnh AB = AC ( gt)
=> Δ ABM = Δ ACM
=> Cạnh BM = CM ( hai cạnh tương ứng )
=> M là trung điểm của BC
b, Do Δ ABM = Δ ACM ( CM a )
=> góc AMB = góc AMC ( hai góc tương ứng )
mà góc AMB + góc AMC = 18000 ( hai góc kề bù )
=> góc AMB = góc AMC =18000 : 2 = 9000
=> AM ⊥ BC