Cho x,y>0 thoã x^2 +y^2=4
Tim GTNN C=(x+\(\dfrac{1}{y}\))^2 +(y+\(\dfrac{1}{x}\))^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
# Bài 1
* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương
* Với \(x,y>0\) áp dụng (1) ta có
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)
Mà \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)
* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)
Áp dụng (2) với x , y > 0 ta có
\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)
* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)
\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)
Dấu "=" xra khi \(x=y=4\)
Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)
1. Cho x,y > 0 .Tim GTNN cua A = \(\dfrac{x^2}{y^2}+\dfrac{4y^2}{x^2}-\dfrac{x}{y}-\dfrac{2y}{y}+1\)
Bài 2. Áp dụng BĐT Cauchy dưới dạng Engel , ta có :
\(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\) ≥ \(\dfrac{\left(1+4+9\right)^2}{x+y+z}=196\)
⇒ \(P_{MIN}=196."="\) ⇔ \(x=y=z=\dfrac{1}{3}\)
Câu 1:
Áp dụng BĐT Cô-si:
\(x^4+y^2\geq 2\sqrt{x^4y^2}=2x^2y\Rightarrow \frac{x}{x^4+y^2}\leq \frac{x}{2x^2y}=\frac{1}{2xy}=\frac{1}{2}(1)\)
\(x^2+y^4\geq 2\sqrt{x^2y^4}=2xy^2\Rightarrow \frac{y}{x^2+y^4}\leq \frac{y}{2xy^2}=\frac{1}{2xy}=\frac{1}{2}(2)\)
Lấy \((1)+(2)\Rightarrow A\leq \frac{1}{2}+\frac{1}{2}=1\)
Vậy \(A_{\max}=1\). Dấu bằng xảy ra khi \(x=y=1\)
Câu 2:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)(x^2+y^2+2xy)\geq (1+1)^2\)
\(\Rightarrow \frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1}=4(*)\)
(do \(x+y\leq 1\) )
Áp dụng BĐT Cô-si:
\(\frac{1}{4xy}+4xy\geq 2\sqrt{\frac{4xy}{4xy}}=2(**)\)
\(x+y\geq 2\sqrt{xy}\Leftrightarrow 1\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\)
\(\Rightarrow \frac{5}{4xy}\geq \frac{5}{4.\frac{1}{4}}=5(***)\)
Cộng \((*)+(**)+(***)\Rightarrow B\geq 4+2+5=11\)
Vậy \(B_{\min}=11\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Áp dụng liên tiếp bất đẳng thức Mincopxki và bất đẳng thức Cauchy-Schwarz:
\(A=\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)
\(A\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(A\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{\left(1+1+1\right)^2}{x+y+z}\right)^2}\)
\(A\ge\sqrt{4+\dfrac{81}{4}}=\sqrt{\dfrac{97}{4}}\)
Dấu "=" xảy ra khi: \(x=y=z=\dfrac{2}{3}\)
\(B=\sqrt{x^2+\dfrac{1}{y^2}+\dfrac{1}{z^2}}+\sqrt{y^2+\dfrac{1}{z^2}+\dfrac{1}{x^2}}+\sqrt{z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}}\)
\(B\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(B=\sqrt{\left(x+y+z\right)^2+2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)
\(B\ge\sqrt{\left(x+y+z\right)^2+2\left(\dfrac{\left(1+1+1\right)^2}{x+y+z}\right)^2}\)
\(B\ge\sqrt{\left(x+y+z\right)^2+\dfrac{162}{\left(x+y+z\right)^2}}\)
\(B\ge\sqrt{4+\dfrac{162}{4}}=\sqrt{\dfrac{89}{2}}\)
Dấu "=" xảy ra khi: \(x=y=z=\dfrac{2}{3}\)
\(M=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{2}{xy}\ge\dfrac{2}{\dfrac{\left(x+y\right)^2}{4}}=\dfrac{8}{\left(x+y\right)^2}=8\)
\(\Rightarrow M_{min}=8\) khi \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(C=\left(x+\dfrac{1}{y}\right)^2+\left(y+\dfrac{1}{x}\right)^2=x^2+\dfrac{1}{y^2}+\dfrac{2x}{y}+y^2+\dfrac{2y}{x}+\dfrac{1}{x^2}=x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)=4+\dfrac{x^2+y^2}{x^2y^2}+2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)=4+\dfrac{4}{x^2y^2}+2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
Áp dụng bđt cosi cho hai số dương:
\(x^2+y^2\ge2\sqrt{x^2y^2}\Rightarrow x^2y^2\le\dfrac{\left(x^2+y^2\right)^2}{4}=\dfrac{4^2}{4}=4\)
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}=2\)
Vậy \(C\ge4+\dfrac{4}{4}+2.2=4+1+4=9\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x^2=y^2\\x^2+y^2=4\end{matrix}\right.\)\(\Leftrightarrow x^2=y^2=2\Leftrightarrow x=y=\sqrt{2}\)
Vậy GTNN của C là 9