Cho x>0, y>0 thoã x+y≤1. Tìm GTNN của biểu thức
A=\(\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Áp dụng BĐT Cô-si:
\(x^4+y^2\geq 2\sqrt{x^4y^2}=2x^2y\Rightarrow \frac{x}{x^4+y^2}\leq \frac{x}{2x^2y}=\frac{1}{2xy}=\frac{1}{2}(1)\)
\(x^2+y^4\geq 2\sqrt{x^2y^4}=2xy^2\Rightarrow \frac{y}{x^2+y^4}\leq \frac{y}{2xy^2}=\frac{1}{2xy}=\frac{1}{2}(2)\)
Lấy \((1)+(2)\Rightarrow A\leq \frac{1}{2}+\frac{1}{2}=1\)
Vậy \(A_{\max}=1\). Dấu bằng xảy ra khi \(x=y=1\)
Câu 2:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)(x^2+y^2+2xy)\geq (1+1)^2\)
\(\Rightarrow \frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1}=4(*)\)
(do \(x+y\leq 1\) )
Áp dụng BĐT Cô-si:
\(\frac{1}{4xy}+4xy\geq 2\sqrt{\frac{4xy}{4xy}}=2(**)\)
\(x+y\geq 2\sqrt{xy}\Leftrightarrow 1\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\)
\(\Rightarrow \frac{5}{4xy}\geq \frac{5}{4.\frac{1}{4}}=5(***)\)
Cộng \((*)+(**)+(***)\Rightarrow B\geq 4+2+5=11\)
Vậy \(B_{\min}=11\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
\(Q=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy+2016=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{5}{4xy}+2016\)
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\). Dấu "=" khi a=b (bạn tự chứng minh)
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}=4\)
Vì x>0, y>0 nên xy>0
Áp dụng bất đẳng thức Cô si cho 2 số dương
\(\frac{1}{4xy}+4xy\ge2\sqrt{\frac{1}{4xy}.4xy}=2\)
Ta có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow\frac{5}{4xy}\ge5\)
Dấu "=" khi \(\hept{\begin{cases}x^2+y^2=2xy\\\frac{1}{4xy}=4xy\\x=y\end{cases}\Rightarrow x=y=\frac{1}{2}}\)
\(\Rightarrow Q\ge4+2+5+2016=2027\)
Vậy \(minQ=2027\)khi \(x=y=\frac{1}{2}\)
\(A=\dfrac{x^2+y^2}{xy}+\dfrac{2xy}{x^2+y^2}=\dfrac{x^2+y^2}{2xy}+\dfrac{x^2+y^2}{2xy}+\dfrac{2xy}{x^2+y^2}\)
\(A\ge\dfrac{2xy}{2xy}+2\sqrt{\left(\dfrac{x^2+y^2}{2xy}\right)\left(\dfrac{2xy}{x^2+y^2}\right)}=3\)
Dấu "=" xảy ra khi \(x=y\)
\(B=\dfrac{\left(x+y\right)^2-4xy}{xy}+\dfrac{4xy}{\left(x+y\right)^2}=\dfrac{\left(x+y\right)^2}{xy}+\dfrac{4xy}{\left(x+y\right)^2}-4\)
\(B=\dfrac{\left(x+y\right)^2}{4xy}+\dfrac{4xy}{\left(x+y\right)^2}+\dfrac{3}{4}.\dfrac{\left(x+y\right)^2}{xy}-4\)
\(B\ge2\sqrt{\dfrac{\left(x+y\right)^2.4xy}{4xy.\left(x+y\right)^2}}+\dfrac{3}{4}.\dfrac{4xy}{xy}-4=1\)
\(B_{min}=1\) khi \(x=y\)
`P=1/(x^2+y^2)+1/(xy)+4xy`
`=1/(x^2+y^2)+1/(2xy)+4xy+1/(4xy)+1/(4xy)`
Áp dụng bunhia dạng phân thức
`=>1/(x^2+y^2)+1/(2xy)>=4/(x+y)^2`
Mà `(x+y)^2<=1`
`=>1/(x^2+y^2)+1/(2xy)>=4`
Áp dụng cosi:
`4xy+1/(4xy)>=2`
`4xy<=(x+y)^2<=1`
`=>1/(4xy)>=1`
`=>P>=4+2+1=7`
Dấu "=" `<=>x=y=1/2`
Câu trả lời trước bị sai nên làm lại.
Ta có:Q=\(\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}=\dfrac{3x+2y}{6}+\dfrac{6}{3x+2y}\)vì xy=6
Đặt t=3x+2y => t\(\ge2\sqrt{2.y.3.x}\)=12
Theo bđt cô si và t \(\ge\)12 ta được :
Q=\(\left(\dfrac{t}{6}+\dfrac{24}{t}\right)-\dfrac{18}{t}\ge2\sqrt{\dfrac{t}{6}.\dfrac{24}{t}}-\dfrac{18}{t}=\dfrac{5}{2}\)
Đẳng thức xảy ra <=> x=2 và y=3
\(Q=\dfrac{2}{x}+\dfrac{3}{y}+\dfrac{6}{3x+2y}\\ Q=\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}\)
Áp dụng bất đẳng thức Cô si cho hai số không âm và thay xy=6 vào ta được
\(Q\ge2\sqrt{\dfrac{2y+3x}{6}\times\dfrac{6}{2y+3x}}\\ Q\ge2\)
Đẳng thức xảy ra <=> \(\left(3x+2y\right)^2\) =36 và xy=6
<=> x=2,y=3
\(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}\ge\dfrac{x^2}{x+y+z}+\dfrac{y^2}{x+y+z}+\dfrac{z^2}{x+y+z}=\dfrac{x^2+y^2+z^2}{x+y+z}=\dfrac{\left(x+y+z\right)^2-2\left(\sqrt{xy}+\sqrt{zx}+\sqrt{yz}\right)}{x+y+z}\ge\dfrac{1-2.1}{1}=-1\)Áp dụng bất đẳng thức cô-si ta có:
\(x+y\ge2\sqrt{xy}\) , \(x+z\ge2\sqrt{xz}\) , \(y+z\ge2\sqrt{yz}\)
Cộng vế với vế suy ra:
\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{zx}+\sqrt{yz}\right)\\ \Leftrightarrow x+y+z\ge1\)
Vậy
Trà ơi ! Mình xin lỗi bạn nhiều lắm bài đó mình lỡ giải sai, để mình sữa lại cho bạn:
Đầu tiên ta vẫn có:\(x+y+z\ge1\) (chứng minh trên)
Vậy \(\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}\ge\dfrac{x^2}{x+y+z}+\dfrac{y^2}{x+y+z}+\dfrac{z^2}{x+y+z}=\dfrac{x^2+y^2+z^2}{x+y+z}\ge x^2+y^2+z^2\ge0\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{5}{4xy}\)Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\left(a,b>0\right)\)(bn tự cm BĐT này) và BĐT cauchy ta có:
\(A\ge\dfrac{4}{x^2+2xy+y^2}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{5}{\left(x+y\right)^2}\)=
\(=\dfrac{4}{\left(x+y\right)^2}+2+\dfrac{5}{\left(x+y\right)^2}\ge4+2+5=11\)(vì x+y\(\le\)1)
Vậy Min A = 11 \(\Leftrightarrow x=y=\dfrac{1}{2}\)