Tìm các số nguyên x,y thỏa mãn
\(\left(x^2+y^2+1\right)^2-5x^2-4y^2-5=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^4+10x^2+2y^6+4y^3-6=0\)
\(\Leftrightarrow5x^4+10x^2+5+2y^6+4y^3+2-7-6=0\)
\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)
\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)
mà \(\left\{{}\begin{matrix}\left(x^2+1\right)^2\ge0,\forall x\inℤ\\\left(y^3+1\right)^2\ge0,\forall y\inℤ\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1=1\\y^3+1=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^3=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) thỏa mãn yêu cầu của đề bài.
\(\Leftrightarrow x^4+y^4+1+2x^2y^2+2y^2+2x^2-5x^2-4y^2-5=0\)
\(\Leftrightarrow x^4+y^4+2x^2y^2-3x^2-2y^2-4=0\)
\(\Leftrightarrow2x^4+2y^4+4x^2y^2-6x^2-4y^2-8=0\)
\(\Leftrightarrow2x^2\left(x^2+y^2\right)+2y^2\left(x^2+y^2\right)-4\left(x^2+y^2\right)-2\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x^2+y^2-2\right)-x^2=4\)
\(\Leftrightarrow\left(x^2+y^2-1\right)^2-1-x^2=4\)
\(\Leftrightarrow\left(x^2+y^2-1\right)^2-x^2=4-1=2^2-1^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-1=2\\x=\pm1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm\sqrt{2}\end{matrix}\right.\)(KTM)
Vậy pt vô nghiệm.
Mình gợi ý phần đầu nè. Xét \(x=0\) riêng được \(y=0\) hoặc \(y=1\).
Xét \(x\ne0\). Khi đó \(x\) và \(x^2+x+1\) nguyên tố cùng nhau với mọi \(x\) nguyên khác 0.
(Ở đây ta chỉ định nghĩa 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất là 1 nên số âm vẫn được).
Để CM điều này ta gọi \(d=gcd\left(x^2+x+1,x\right)\) thì \(1⋮d\).
Vế trái là một số chia hết cho 4 nên trong 2 số \(x\) và \(x^2+x+1\) phải có một số chia hết cho 4
(Nếu mỗi số đều chia hết cho 2 thì không thể nguyên tố cùng nhau)
Trường hợp 1: \(x⋮4\) còn \(x^2+x+1\) lẻ.
Do \(y\) và \(y-1\) có 1 số chẵn và 1 số lẻ nên số chẵn sẽ là ước của \(x\) còn số lẻ là ước của \(x^2+x+1\).
Tức là có 2 trường hợp: \(x=4y\) và \(x=4\left(y-1\right)\).
Trường hợp 2 ngược lại.
Tới đây bạn tự giải được nha.
\(x\left[1+x+x^2\right]=4y\left[y-1\right]\)
\(\Leftrightarrow x^3+x^2-4y^2+x+4y=0\)
\(\Leftrightarrow x^2\left[x+1\right]+x-4y^2+4y=0\)
\(\Leftrightarrow\Delta=b^2-4ac=1-16xy+16xy^2-16y+16y^2\)
\(\Rightarrow\orbr{\begin{cases}x1=\frac{-1+\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\\x2=\frac{-1-\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\end{cases}}\)
đến đây tự làm tiếp nhé
Ta có :
\(\left(x^2+4y^2+28\right)^2=17\left(x^4+y^4+14y^2+49\right)\)
\(\Leftrightarrow\left[x^2+4\left(y^2+7\right)\right]^2=17\left[x^4+\left(y^2+7\right)^2\right]\)
\(\Leftrightarrow16x^4-8x^2\left(y^2+7\right)+\left(y^2+7\right)^2=0\)
\(\Leftrightarrow\left[4x^2-\left(y^2+7\right)\right]^2=0\Leftrightarrow4x^2-y^2-7=0\)
\(\Leftrightarrow\left(2x+y\right)\left(2x-y\right)=7\)
Vì x , y nguyên dương nên \(2x+y>0\)và \(2x+y>2x-y\)
Do đó \(2x+y=7\)và \(2x-y=1\). Vậy \(x=2,y=3\)
Ta có :
\(\left(x^2+4y^2+28\right)^2=17\left(x^4+y^4+14y^2+49\right)\)
\(\Leftrightarrow\left[x^2+4\left(y^2+7\right)\right]^2=17\left[x^4+\left(y^2+7\right)^2\right]\)
\(\Leftrightarrow16x^4-8x^2\left(y^2+7\right)+\left(y^2+7\right)^2=0\)
\(\Leftrightarrow\left[4x^2-\left(y^2+7\right)\right]^2=0\)
\(\Leftrightarrow4x^2-y^2-7=0\)
\(\Leftrightarrow\left(2x+y\right)\left(2x-y\right)=7\)
Vì x , y nguyên dương nên \(2x+y>0\) và \(2x+y>2x-y\)
Do đó : \(\left[\begin{array}{nghiempt}2x+y=7\\2x-y=1\end{array}\right.\) \(\Rightarrow x=2;y=3\)
\(16y^4+\left(8x^2+244\right)y^2+x^4+56x^2+784+17x^4+833\)
\(-17y^4+16y^4-238y^2+\left(8x^2+224\right)y^2-4=0\)
\(-\left[y^4+\left(8x^2+14\right)y^2+16x^4-56x^2+4\right]\)
\(pt\Leftrightarrow\left(x^2+y^2+1\right)^2-5\left(x^2+y^2+1\right)=-y^2\)
\(\Leftrightarrow\left(x^2+y^2+1\right)\left(x^2+y^2-4\right)=-y^2\)
Gọi d là UWCLN của x2+y2+1 và x2+y2-4
\(\Rightarrow\hept{\begin{cases}x^2+y^2+1⋮d\\x^2+y^2-4⋮d\end{cases}}\Rightarrow\left(x^2+y^2+1\right)\left(x^2+y^2-4\right)⋮d^2\Rightarrow y^2⋮d^2\Rightarrow y^2⋮d\Rightarrow\hept{\begin{cases}x^2+1⋮d\\x^2-4⋮d\end{cases}}\Rightarrow5⋮d\)
\(\Rightarrow\hept{\begin{cases}x^2-5+6⋮d\\x^2+5-9⋮d\end{cases}}\Rightarrow\hept{\begin{cases}x^2+6⋮d\\x^2-9⋮d\end{cases}}\Rightarrow3⋮d\)
Do \(\left(3,5\right)=1\)
\(\Rightarrow d=1\)
\(\Rightarrow\hept{\begin{cases}x^2+y^2+1=a^2\\x^2+y^2-4=b^2\end{cases}\Rightarrow}a^2-1=b^2+4\Rightarrow a^2-b^2=5\Rightarrow\left(a-b\right)\left(a+b\right)=5\)
Sau đó lập bảng xét các ước của 5 ta tìm được a và b, sau khi tìm được a và b ta sẽ tìm được x và y