tam giác abc nhọn, đường cao ah. D,E lần lượt là hình chiếu của h trên ab, ac
cm DE=AH x sinBAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a mình làm chứng minh tương tự nên hơi tắt đó nha, thật ra làm vẫn Ok nhưng mà đi thi học kì hay cấp 3 thì phải chứng minh hẳn 2 cái ra đó nhé
a) Xét tam giác ABH vuông tại H có HD là đường cao
=> AD.AB = AH2 ( Hệ thức lượng) (1)
Xét tam giác ACH vuông tại H có HE là đường cao
=> AE.AC = AH2 ( Hệ thức lượng) (2)
(1)(2) => AD.AB = AE.AC
b) Có AD.AB = AE.AC
=> \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét \(\Delta ADE\) và \(\Delta ACB\) có:
+ \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
+ Chung góc A
=> \(\Delta ADE\) \(\sim\) \(\Delta ACB\) (c-g-c)
=> \(\widehat{AED}=\widehat{ABC}\) (2 góc tương ứng)
a) Xét tứ giác ADHE có
\(\widehat{ADH}\) và \(\widehat{AEH}\) là hai góc đối
\(\widehat{ADH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ADHE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)(đpcm)
a, Xét tứ giác ADHE ta có
^ADH + ^AEH = 1800
mà 2 góc này đối
Vậy tứ giác ADHE là tứ giác nt 1 đường tròn
b, Ta có \(AH^2=AD.AB;AH^2=AE.AC\) ( hệ thức lượng )
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)Xét tam giác ADE và tam giác ACB
có ^A _ chung ; AD/AC = AE/AB
Vậy tam giác ADE ~ tam giác ACB (g.g)
=> ^ADE = ^ACB
mà ^ADE là góc ngoài đỉnh D
Vậy tứ giác BDEC nt 1 đường tròn
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=2500-900=1600\left(Pitago\right)\)
\(\Rightarrow AC=40\left(cm\right)\)
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{30.40}{50}=24\left(cm\right)\)
\(AB^2=AH^2+HB^2\Rightarrow HB^2=AB^2-AH^2=900-576=324\left(Pitago\right)\)
\(\Rightarrow HB=18\left(cm\right)\)
\(HC=BC-HB=50-18=32\left(cm\right)\)