2. cho hình vẽ
biết ax//cy chứng minh rằng góc A+B+C=360 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha =="
Kẻ Bz // Ax
mà Ax // Cy
=> Bz // Cy
Bz // Ax
=> A + B1 = 1800 (2 góc trong cùng phía)
Bz // Cy
=> C + B2 = 1800 (2 góc trong cùng phía)
Ta có:
A + B + C
= A + B1 + B2 + C
= 1800 + 1800
= 3600 (đpcm)
Chúc bạn học tốt ^^
Kẻ thêm tia Bz
Ta có : \(\widehat{xAB}=\widehat{B_3}\)(mà 2 góc này ở vị trí so le trong)
⇒Ax//Bz
Chứng minh tương tự: \(\widehat{BCy}=\widehat{C_4}\)(mà 2 góc này ở vị trí so le trong)
\(\Rightarrow\) Bz//Cy
⇒Ax//Cy
Ta có Ax // By
Vẽ Bz // Ax và nằm trong góc ABC(*)
Vì Ax // Bz (cách dựng)
góc BAx + góc ABz =180 độ (1)
VÌ Ax // Cy ,Bz//Ax > Bz //Cy(tính chất 3 đường thẳng song song)
góc CBz+BCy=180 độ(2)
Từ (1) và (2) >góc BAx +góc ABz+góc CBz+góc BCy=180 độ +180Độ=360độ
Mà góc ABz+góc CBz= góc B (theo *)
>Góc B +góc BAx +góc BCy=360 độ
Kéo dài AB cắt Cy tại E và kéo dài CB cắt Ax tại G như hình vẽ dưới đây:
\(\widehat{ABC}\) = \(\widehat{GBE}\) (1) (vì đối đỉnh)
\(\widehat{GBE}\) = \(\widehat{BCE}\) + \(\widehat{CEB}\) (2) ( vì góc ngoài của tam giác bằng tổng hai góc trong không kề với nó)
\(\widehat{ABC}\) = \(\widehat{GAB}\) + \(\widehat{BCE}\) (3)
Từ (1); (2); (3) ta có: \(\widehat{BCE}\) + \(\widehat{CEB}\) = \(\widehat{GAB}\) + \(\widehat{BCE}\)
⇒ \(\widehat{CEB}\) = \(\widehat{GAB}\)
Mà hai góc CEB và góc GAB là hai góc ở vị trí so le trong nên
Cy // Ax (đpcm)