tìm x
\(10x^2-33x-7=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^3-3x^2-16x+48=0\)
\(\Leftrightarrow x^2\left(x-3\right)-16\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x^2-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm4\end{cases}}\)
b) Ta có: \(10x^2-33x-7=0\)
\(\Leftrightarrow\left(10x^2-35x\right)+\left(2x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\5x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{5}\end{cases}}\)
x3 - 3x2 - 16x + 48 = 0
<=> ( x3 - 3x2 ) - ( 16x - 48 ) = 0
<=> x2( x - 3 ) - 16( x - 3 ) = 0
<=> ( x - 3 )( x2 - 16 ) = 0
<=> ( x - 3 )( x - 4 )( x + 4 ) = 0
<=> x = 3 hoặc x = 4 hoặc x = -4
10x2 - 33x - 7 = 0
<=> 10x2 + 2x - 35x - 7 = 0
<=> ( 10x2 + 2x ) - ( 35x + 7 ) = 0
<=> 2x( 5x + 1 ) - 7( 5x + 1 ) = 0
<=> ( 5x + 1 )( 2x - 7 ) = 0
<=> \(\orbr{\begin{cases}5x+1=0\\2x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{5}\\x=\frac{7}{2}\end{cases}}\)
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
\(1,\Leftrightarrow x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=9\\x=0\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\Leftrightarrow-4x=7\Leftrightarrow x=-\dfrac{7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\Leftrightarrow5x=15\Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(x-7\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{4}{3}\end{matrix}\right.\)
\(7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ 8,\Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=4\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ 11,\Leftrightarrow\left(4x-3\right)\left(3-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\Leftrightarrow-10x=3\Leftrightarrow x=-\dfrac{3}{10}\)
\(1,\Leftrightarrow x\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\\ \Leftrightarrow-4x=7\\ \Leftrightarrow x=\dfrac{-7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\\ \Leftrightarrow5x=15\\ \Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\)
\(5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(3x+4\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=7\end{matrix}\right.\\ 7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(8,\Leftrightarrow10x\left(x-4\right)+2\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\\ \Leftrightarrow-5x=0\\ \Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(11,\Leftrightarrow\left(2x-3\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\\ \Leftrightarrow-10x=3\\ \Leftrightarrow x=-\dfrac{3}{10}\)
a)
\(\left(x+2\right)^2-9=0\)
\(\Rightarrow\left(x+2\right)^2=9=3^2\)
\(\Rightarrow x+2=\pm3\)
\(\Rightarrow x=-5;1\)
b)
\(25x^2-10x+1=0\)
\(\left(5x\right)^2-2\cdot5x+1^2=0\)
\(\Rightarrow\left(5x+1\right)^2=0\)
\(\Rightarrow5x+1=0\)
\(\Rightarrow5x=-1;x=\dfrac{-1}{5}\)
c)
\(x^2+14x+49=0\)
\(\Rightarrow x^2+2\cdot7x+7^2=0\)
\(\Rightarrow\left(x+7\right)^2=0;x+7=0\)
\(\Rightarrow x=-7\)
d)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(4x^2-4x+1+x^2+6x+9-5x^2+5\cdot49=0\)
\(\Rightarrow5x^2-5x^2-4x+6x+10+245=0\)
\(\Rightarrow2x+255=0\)
\(\Rightarrow2x=-255\)
\(\Rightarrow x=\dfrac{-255}{2}\)
7)(16-8x)(2-6x)=0
=> 16 - 8x = 0 hoặc 2 - 6x = 0
=> 16 = 8x hoặc 2 = 6x
=> x = 2 hoặc x = 1/3
8) (x+4)(6x-12)=0
=> x + 4 = 0 hoặc 6x - 12 = 0
=> x = -4 hoặc x = 2
9) (11-33x)(x+11)=0
=> 11 - 33x = 0 hoặc x + 11 = 0
=> x = 1/3 hoặc x = -11
10) (x-1/4)(x+5/6)=0
=> x - 1/4 = 0 hoặc x + 5/6 = 0
=> x = 1/4 hoặc x = -5/6
11) (7/8-2x)(3x+1/3)=0
=> 7/8 - 2x = 0 hoặc 3x + 1/3 = 0
=> 2x = 7/8 hoặc 3x = -1/3
=> x = 7/16 hoặc x = -1/9
12)3x-2x^2=0
=> x(3 - 2x) = 0
=> x = 0 hoặc 3 - 2x = 0
=> x = 0 hoặc x = 3/2
\(a,\left(16-8x\right)\left(2-6x\right)=0\)
\(\hept{\begin{cases}16-8x=0\\2-6x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}}\)
\(b,\left(x+4\right)\left(6x-12\right)=0\)
\(\hept{\begin{cases}x+4=0\\6x-12=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\x=2\end{cases}}}\)
\(c,\left(11-33x\right)\left(x+11\right)=0\)
\(\hept{\begin{cases}11-33x=0\\x+11=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\x=-11\end{cases}}}\)
\(d,\left(x-\frac{1}{4}\right)\left(x+\frac{5}{6}\right)=0\)
\(\hept{\begin{cases}x-\frac{1}{4}=0\\x+\frac{5}{6}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{5}{6}\end{cases}}}\)
\(e,\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)
\(\hept{\begin{cases}\frac{7}{x}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}\\x=-\frac{1}{9}\end{cases}}}\)
\(f,3x-2x^2=0\)
\(x\left(3-2x\right)=0\)
\(\hept{\begin{cases}x=0\\3-2x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
a) x2 + 10x + 16 = 0
<=> x2 + 2x + 8x + 16 = 0
<=> x( x + 2 ) + 8( x + 2 ) = 0
<=> ( x + 2 )( x + 8 ) = 0
<=> \(\orbr{\begin{cases}x+2=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-8\end{cases}}\)
b) 4x2 - 12x - 7 = 0
<=> 4x2 + 2x - 14x - 7 = 0
<=> 2x( 2x + 1 ) - 7( 2x + 1 ) = 0
<=> ( 2x + 1 )( 2x - 7 ) = 0
<=> \(\orbr{\begin{cases}2x+1=0\\2x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
a. \(x^2+10x+16=0\)
\(\Leftrightarrow x^2+8x+2x+16=0\)
\(\Leftrightarrow x\left(x+8\right)+2\left(x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-8\end{cases}}\)
b. \(4x^2-12x-7=0\)
\(\Leftrightarrow4x^2+2x-14x-7=0\)
\(\Leftrightarrow2x\left(2x+1\right)-7\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\2x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=7\\2x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}\)
\(ĐK:x\ge0;y\ge2;5x-y\ge0\\ PT\left(1\right)\Leftrightarrow\sqrt{y+3x}-\sqrt{5x-y}+\sqrt{2x+7y}-3\sqrt{x}=0\\ \Leftrightarrow\dfrac{2y-2x}{\sqrt{y+3x}+\sqrt{5x-y}}+\dfrac{7y-7x}{\sqrt{2x+7y}+3\sqrt{x}}=0\\ \Leftrightarrow\left(y-x\right)\left(\dfrac{2}{\sqrt{y+3x}+\sqrt{5x-y}}+\dfrac{7}{\sqrt{2x+7y}+3\sqrt{x}}\right)=0\\ \Leftrightarrow x=y\left(\dfrac{2}{\sqrt{y+3x}+\sqrt{5x-y}}+\dfrac{7}{\sqrt{2x+7y}+3\sqrt{x}}>0\right)\)
Thay vào \(PT\left(2\right)\Leftrightarrow x-4+\sqrt{x-2}=\sqrt{x^3-10x^2+33x-34}-\sqrt{x^3-9x^2+24x-16}\)
\(\Leftrightarrow\dfrac{x^2-9x+18}{x-4+\sqrt{x-2}}=\dfrac{-x^2+9x-18}{\sqrt{x^3-10x^2+33x-34}+\sqrt{x^3-9x^2+24x-16}}\\ \Leftrightarrow\left(x^2-9x+18\right)\left(\dfrac{1}{x-4+\sqrt{x-2}}+\dfrac{1}{\sqrt{x^3-10x^2+33x-34}+\sqrt{x^3-9x^2+24x-16}}\right)=0\\ \Leftrightarrow x^2-9x+18=0\left(\text{ngoặc lớn luôn }>0,\forall x\ge2\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=y=3\\x=y=6\end{matrix}\right.\)
Vậy ...
\(10x^2-33x-7=0\)
\(=10x^2+2x-35x-7\)
\(=2x.\left(5x+1\right)-7.\left(5x+1\right)\)
\(=\left(2x-7\right).\left(5x+1\right)\)
\(10x^2-33x-7=0\)
\(\Leftrightarrow10x^2-35x+2x-7=0\)
\(\Leftrightarrow5x\left(2x-7\right)+\left(2x-7\right)=0\)
\(\Leftrightarrow\left(5x+1\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x+1=0\\2x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{5}\\x=\frac{7}{2}\end{cases}}}\)