có 6 đội bóng thi đấu với nhau trong 1 vòng tròn một lượt , mỗi đội đấu đúng 1 trận với mỗi đội khac . Chứng minh rằng vào bất cứ thời điểm nào cũng có 3 đội trong đó từng cặp đã đấu với nhau hoặc chưa đấu với nhau trận nào .
nhanh mik tik , 20 phút sau sẽ có kết quả
huhu , chưa ai trả lời . đáp án đây :
giả sử 6 đội bóng là A,B,C,D,E,F . Xét đội A phải đấu từ 0 đến 5 trận nên theo nguyên lý Dirichlet ta suy ra : A đã đấu hoặc A chưa đấu với ít nhất với 3 đội khác . không mất tính tổng quát , giả sử A đã đấu với B,C,D .
+ Nếu B,C,D từng cặp chưa đấu với nhau thì bài toán được chứng minh
+ Nếu B,C,D có 2 đội đã đấu với nhau , ví dụ B và C thì 3 đội A,B,C từng cặp đã đấu với nhau
Như vậy bất cứ lúc nào cũng có 3 đội trong đó từng cặp đã đấu với nhau hoặc chưa đấu với nhau trận nào.