cho a,b,c là các số thực dương thỏa mãn a+b+c=1. tìm gtnn của R=\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\dfrac{1}{1+a}\ge\dfrac{2017}{b+2017}+\dfrac{2018}{c+2018}\ge2\sqrt{\dfrac{2017.2018}{\left(b+2017\right)\left(c+2018\right)}}\)
\(1-\dfrac{2017}{b+2017}\ge\dfrac{1}{1+a}+\dfrac{2018}{b+2018}\ge2\sqrt{\dfrac{2018}{\left(1+a\right)\left(b+2018\right)}}\)
\(1-\dfrac{2018}{c+2018}\ge\dfrac{1}{1+a}+\dfrac{2017}{b+2017}\ge2\sqrt{\dfrac{2017}{\left(1+a\right)\left(b+2017\right)}}\)
Nhân vế:
\(\dfrac{abc}{\left(a+1\right)\left(b+2017\right)\left(c+2018\right)}\ge\dfrac{8.2017.2018}{\left(a+1\right)\left(b+2017\right)\left(c+2018\right)}\)
\(\Rightarrow abc\ge8.2017.2018\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2.1;2.2017;2.2018\right)=...\)
Áp dụng bđt Svácxơ, ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
\(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Áp dụng, thay vào A, ta có:
\(A\le\text{Σ}\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{3}{2}\)
Dấu "="⇔\(a=b=c=1\)
Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)
\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)
Ta có:
\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)
Tương tự:
\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)
Cộng vế:
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)
\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)
\(R=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{1}=9\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)
Vậy GTNN của \(R\) là \(9\) khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt ~