( 10n + 23 ) chia het cho ( 1 + 2n )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B,
6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1
Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ
Ư (4) ={ 1;2;4}
Vì n là số lẻ nên
2n + 1 =1
2n =1-1
2n =0
n = 0 : 2 =0
Vậy n =0
A3n+7 chia het cho n+2
3n-12+5 chia het cho n+2
(3n-12)+5 chia het cho n+2
3(n-4)+5 chia het cho n+2
=>5 chia het cho n+2
=>n+2 thuoc (U)5={1;-1;5;-5}
Neu:n+2=1=>n=-1(loai)
Neu:n+2=-1=>n=-3(loai)
Neu:n+2=5=>n=3
Neu:n+2=-5=>n=-7(loai)
Vay:n=3
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
a) ta có : n+6 chia hết n-1
<=> n-1+7 chia hết cho n-1
mà n-1 chia hết cho n-1
=> 7 chia hết cho n-1
n-1= Ư(7) = { -1 ; -7 ;1;7)
=> n = {0 ; -6 ; 2 ; 8
b) 2n + 15 chia hết cho n+5
<=> 2n + 10 + 5 chia hết cho n+5
<=> 2(n+5) + 5 chia hết n+5
mà 2(n+5) chia hết n+5
=> n+5 = Ư(5) = { -5 ; -1 ; 1; 5 )
=> n= {-10 ; -6 ; -4 ; 0}
c) 10n + 23 chia hết 2n +1
<=> 10n +5 + 18 chia hết 2n+1
<=> 5(2n+1) + 18 chia hết 2n+1
mà 5(2n+1) chia hết cho 2n+1
=> 2n +1 = Ư(18) = { ....}
=> n = ....
d) 20 chia hết 2n+1
=> 2n+1 = Ư(20) = {....}
=> n={...}
e) tương tự d)
f ) 2n+3 là ước của 10
mà Ư(10) = { -10;-5;-2;-1;1;2;5;10}Ư
=> n = {...}
g) n(n+1) = 6
Ta có : 6 = 2 . 3
=> n = 2
( câu c;d;f tự tính mấy cái .... nha , tương tự câu a;b thôi )
Cảm ơn nha nhưng cho mình hỏi ở câu c. Tại sao: 10n lại chuyển thành 5(2n+1)
10n+23\(⋮\)1+2n
=>5(2n+1)+18\(⋮\)2n+1
vì 5(2n+1)\(⋮\)2n+1
=>18\(⋮\)2n+1
=>2n+1\(\in\)\([18]\)