Tìm các số nguyên tố a,b,c biết 5a+15b+21c=765
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Ta có:
\(\left\{{}\begin{matrix}2a=7b\\5b=4c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{7}=\dfrac{b}{2}\\\dfrac{b}{4}=\dfrac{c}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{14}=\dfrac{b}{4}\\\dfrac{b}{4}=\dfrac{c}{5}\end{matrix}\right.\Leftrightarrow\dfrac{a}{14}=\dfrac{b}{4}=\dfrac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{14}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{3a}{42}=\dfrac{7b}{28}=\dfrac{5c}{25}=\dfrac{3a+5c-7b}{42+25-28}=\dfrac{30}{39}=\dfrac{10}{13}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{14}=\dfrac{10}{13}\\\dfrac{b}{4}=\dfrac{10}{13}\\\dfrac{c}{5}=\dfrac{10}{13}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{140}{13}\\b=\dfrac{40}{13}\\c=\dfrac{50}{13}\end{matrix}\right.\)
Vậy ...
b) Tương tự câu a.
Chúc bạn học tốt!
a,Ta có:
2a=7b\(\Rightarrow\)\(\dfrac{a}{7}\)=\(\dfrac{b}{2}\)\(\Rightarrow\)\(\dfrac{a}{14}\)=\(\dfrac{b}{4}\)(1)
5b=4c\(\Rightarrow\)\(\dfrac{b}{4}\)=\(\dfrac{c}{5}\)\(\Rightarrow\)\(\dfrac{b}{4}\)=\(\dfrac{c}{5}\)(2)
Từ (1) và (2)\(\Rightarrow\)\(\dfrac{a}{14}\)=\(\dfrac{c}{5}\)=\(\dfrac{b}{4}\)\(\Rightarrow\)\(\dfrac{3a}{42}\)=\(\dfrac{5c}{25}\)=\(\dfrac{7b}{28}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\dfrac{3a}{42}\)=\(\dfrac{5c}{25}\)=\(\dfrac{7b}{28}\)=\(\dfrac{3a+5c-7b}{42+25-28}\)=\(\dfrac{30}{39}\)=\(\dfrac{10}{13}\)
\(\Rightarrow\)a=\(\dfrac{10}{13}\).14=\(\dfrac{140}{13}\)
b=\(\dfrac{10}{13}\).4=\(\dfrac{40}{13}\)
c=\(\dfrac{10}{13}\).5=\(\dfrac{50}{13}\)
Vậy.....
chúc bạn học tốt
Nhân chéo ta được:
28(5a+7b)=29(6a+5b)
140a+196b=174a+145b
51b=34a
Vì a,b là 2 số nguyên tố cùng nhau và là số tự nhiên
ƯCLN(51,34)=17
Từ đây ta tính được a=3;b=2