Chứng minh rằng
\(\frac{A+B}{A-B}\)=\(\frac{C+A}{C-A}\)
Ta suy ra được đẳng thức \(^{A^2}\)= BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ad=bc\Rightarrow ad:dc=bc:dc\Rightarrow\frac{ad}{dc}=\frac{bc}{dc}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Ta có: ad=bc (1)
Chia 2 vế của (1) cho bd ta có:
\(VT=\frac{ad}{bd}=\frac{a}{b}\left(2\right)\)
\(VP=\frac{bc}{bd}=\frac{c}{d}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
=> (a + b).(c - a) = (c + a).(a - b)
=> (a + b).c - (a + b).a = (c + a).a - (c + a).b
=> a.c + b.c - a2 - a.b = a.c + a2 - b.c - a.b
=> b.c - a2 = a2 - b.c
=> b.c + b.c = a2 + a2
=> 2.b.c = 2.a2
=> b.c = a2 (đpcm)
Cách 1:
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{a}\Rightarrow a^2=b.c\)
Cách 2: Đặt \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k,\) ta có:
\(a+b=k\left(a-b\right)\) và \(c+a=k\left(c-a\right)\)
\(\Rightarrow a\left(1-k\right)=b\left(-k-1\right)\) và \(c\left(1+k\right)=a\left(-k-1\right)\)
\(\Rightarrow\frac{a}{b}=\frac{k+1}{k-1}\) và \(\frac{c}{a}=\frac{k+1}{k-1}\)
Từ hai đẳng thức cuối ta được:
\(\frac{a}{b}=\frac{c}{a}\Rightarrow a^2=b.c\)
\(ad=bc=>ad:dc=bc:dc=>\frac{ad}{dc}=\frac{bc}{dc}=>\frac{a}{c}=\frac{b}{d}\)
\(ad=bc\Rightarrow\frac{ad}{cd}=\frac{bc}{cd}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Giả sử tất cả các tỷ lệ thức đều có nghĩa.
Từ: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
Và suy ra: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
Và Từ: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)
hahaha Nguyễn Tuấn Thái ttv cop bài của mk chỗ a2 mk viết nhầm thành a2 nó chép vào nên bị sai theo mọi người tích đúng cho mk nhá sai chính tả 1 chút thôi mà
Ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a}{c}=\frac{b}{a}\) (*)
Từ (*),ta có: \(\frac{a}{c}=\frac{b}{a}\Leftrightarrow a^2=bc^{\left(đpcm\right)}\)
~ Học tốt ~