K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
2 tháng 11 2021

ta có :

undefined

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

a: =>x(x+3)=0

=>x=0 hoặc x=-3

b: =>x(1-2x)=0

=>x=0 hoặc x=1/2

c: =>(x-7)(2x+3-x)=0

=>(x-7)(x+3)=0

=>x=7 hoặc x=-3

d: =>(x-2)(3x-1-x-3)=0

=>(x-2)(2x-4)=0

=>x=2

20 tháng 3 2023

a)

`x^2 +3x=0`

`<=>x(x+3)=0`

\(< =>\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

b)

`x-2x^2 =0`

`<=>x(1-2x)=0`

\(< =>\left[{}\begin{matrix}x=0\\1-2x=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

c)

`(x-7)(2x+3)=x(x-7)`

`<=>(x-7)(2x+3)-x(x-7)=0`

`<=>(x-7)(2x+3-x)=0`

`<=>(x-7)(x+3)=0`

\(< =>\left[{}\begin{matrix}x-7=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

d)

`(x-2)(x+3)=(x-2)(3x-1)`

`<=>(x-2)(x+3)-(x-2)(3x-1)=0`

`<=>(x-2)(x+3-3x+1)=0`

`<=>(x-2)(-2x+4)=0`

\(< =>\left[{}\begin{matrix}x-2=0\\-2x+4=0\end{matrix}\right.\\ < =>x=2\)

a: =>|x-3/2|=2

\(\Leftrightarrow x-\dfrac{3}{2}\in\left\{2;-2\right\}\)

hay \(x\in\left\{\dfrac{7}{2};-\dfrac{1}{2}\right\}\)

f: \(\Leftrightarrow\left[{}\begin{matrix}2x+3=x-2\\2x+3=2-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{3}\end{matrix}\right.\)

b) Đặt \(x^2+2x+3=a\)(a>0)

Ta có: \(\dfrac{x^2+2x+7}{\left(x+1\right)^2+2}=x^2+2x+4\)

\(\Leftrightarrow\dfrac{x^2+2x+7}{x^2+2x+1+2}=x^2+2x+4\)

\(\Leftrightarrow\dfrac{x^2+2x+7}{x^2+2x+3}=x^2+2x+4\)

\(\Leftrightarrow\dfrac{a+4}{a}=a+1\)

\(\Leftrightarrow a^2+a=a+4\)

\(\Leftrightarrow a^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\left(nhận\right)\\a=-2\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x^2+2x+3=2\)

\(\Leftrightarrow x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

Vậy: S={-1}

27 tháng 2 2021

ĐKXĐ của cả 2 pt trên đều là `x in RR`

`a,1/(x^2-2x+2)+2/(x^2-2x+3)=6/(x^2-2x+4)`

Đặt `a=x^+2x+3(a>=2)` ta có:

`1/(a-1)+2/a=6/(a+1)`

`<=>a(a+1)+2(a-1)(a+1)=6a(a-1)`

`<=>a^2+a+2(a^2-1)=6a^2-6a`

`<=>a^2+a+2a^2-2=6a^2-6a`

`<=>3a^2-5a+2=0`

`<=>3a^2-3a-2a+2=0`

`<=>3a(a-1)-2(a-1)=0`

`<=>(a-1)(3a-2)=0`

`a>=2=>a-1>=1>0`

`a>=2=>3a-2>=4>0`

Vậy pt vô nghiệm

`(x^2+2x+7)/((x+1)^2+2)=x^2+2x+4`

`<=>(x^2+2x+7)=(x^2+2x+4)(x^2+2x+3)`

Đặt `a=x^2+2x+3(a>=2)`

`pt<=>a+4=a(a+1)`

`<=>a^2+a=a+4`

`<=>a^2=4`

`<=>a=2` do `a>=2`

`<=>(x+1)^2+2=2`

`<=>(x+1)^2=0`

`<=>x=-1`

Vậy `S={-1}`

24 tháng 5 2017

a) (x + 1)(2x – 2) – 3 > –5x – (2x + 1)(3 – x)

⇔ 2x2 – 2x + 2x – 2 – 3 > –5x – (6x – 2x2 + 3 – x)

⇔ 2x2 – 5 ≥ –5x – 6x + 2x2 – 3 + x

⇔ 10x ≥ 2 ⇔ x ≥ 1/5

Tập nghiệm: S = {x | x ≥ 1/5}

b) (x – 3)2 + 4(2 – x) > x(x + 7)

⇔ x2 – 6x + 9 + 8 – 4x > x2 + 7x

⇔ –17x > –17

⇔ x < -17/-17

⇔ x < 1

Tập nghiệm: S = {x | x < 1}.

21 tháng 12 2021

c: =>7-x=-2x-4

=>x=3

21 tháng 12 2021

sao chỉ lm 1 câu thế ja?

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) đẻ được hỗ trợ tốt hơn. Viết như thế kia rất khó đọc => khả năng bị bỏ qua bài cao.

a: =>3x=3

=>x=1

b: =>12x-2(5x-1)=3(8-3x)

=>12x-10x+2=24-9x

=>2x+2=24-9x

=>11x=22

=>x=2

c: =>2x-3(2x+1)=x-6x

=>-5x=2x-6x-3=-4x-3

=>-x=-3

=>x=3

d: =>2x-5=0 hoặc x+3=0

=>x=5/2 hoặc x=-3

e: =>x+2=0

=>x=-2

13 tháng 4 2021

a, \(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)

\(\Leftrightarrow\left(x^2-5x+7-2x+5\right)\left(x^2-5x+7+2x-5\right)=0\)

\(\Leftrightarrow\left(x^2-7x+12\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow x=1;x=2;x=3;x=4\)

Vậy tập nghiệm phương trình là S = { 1 ; 2 ; 3 ; 4 } 

b, \(\left|2x-1\right|=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là S = { -2 ; 3 } 

c, \(\left|2x-1\right|=\left|x+5\right|\Leftrightarrow\left(2x-1\right)^2=\left(x+5\right)^2\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(x+5\right)^2=0\Leftrightarrow\left(2x-1-x-5\right)\left(2x-1+x+5\right)=0\Leftrightarrow x=6;x=-\dfrac{4}{3}\)

Vậy tập nghiệm của phương trình là S = { -4/3 ; 6 } 

d, \(\left|3x+1\right|=x-2\)

TH1 : \(3x+1=x-2\Leftrightarrow2x=-3\Leftrightarrow x=-\dfrac{3}{2}\)

TH2 : \(3x+1=-x+2\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\)

Vậy tập nghiệm của phương trình là S = { -3/2 ; 1/4 } 

các ý còn lại tương tự 

a) Ta có: \(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)

\(\Leftrightarrow\left(x^2-5x+7-2x+5\right)\left(x^2-5x+7+2x-5\right)=0\)

\(\Leftrightarrow\left(x^2-7x+12\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\\x=1\\x=2\end{matrix}\right.\)

Vậy: S={3;4;1;2}