Có 12 quyển sách đôi một khác nhau, trong đó có 2 quyển Toán, 4 quyển Lí, 6 quyển Hóa. Có bao nhiêu cách xếp sách lên kệ dài sao cho cách sách cùng môn học được xếp kề nhau?
A. 12!
B. 2!.4!.6!.3!
C. 2!.4!.6!
D. Đáp số khác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để sắp xếp số sách đó lên kệ và thỏa mãn đầu bài ta cần làm hai công việc sau:
Đầu tiên; đặt 3 nhóm sách ( toán; văn; anh) lên kệ có 3!=6 cách.
Sau đó; trong mỗi nhóm ta có thể thay đổi cách xếp các quyển sách với nhau:
Nhóm toán có 4!=24 cách.
Nhóm văn có 2!=2 cách.
Nhóm anh có 6!=720 cách.
Theo quy tắc nhân có : 6.24.2.720=207360 cách.
Chọn B.
3 nha bạn. Mà bạn có phải là fan của Fairy Tall k,nếu đúng thì kb nha
Số cách chọn 3 quyển sách văn là \(C^3_4=4\).
Số cách chọn 3 quyển sách anh là \(C^3_5=10\).
a, Số cách sắp xếp vào 1 kệ dài là \(9!.4.10=14515200\) cách.
b, Coi số sách mỗi loại là một phần tử.
Số cách sắp xếp thỏa mãn yêu cầu bài toán là \(3!.4.10=240\) cách.
Xếp 5 quyển Toán cạnh nhau: \(5!\) cách
Xếp 5 quyển Lý cạnh nhau: \(4!\) cách
Xếp 3 quyển Văn cạnh nhau: \(3!\) cách
Hoán vị 3 loại Toán-Lý-Văn: \(3!\) cách
Tổng cộng có: \(5!.4!.3!.3!=...\) cách xếp thỏa mãn
Có 3 môn học nên có 3! Cách xếp sách theo môn Ứng với mỗi cách xếp theo môn có 5!cách xếp toán,4! Cách xếp hóa và 3! Cách xếp sách lí. Vậy số cách xếp sách là : 3!5!4!3!cách
Chọn C
a) Số cách xếp 5 quyển Toán nằm cạnh nhau là: `5! . 10!`
b)
Xếp 5 quyển sách Toán, ta có `5!` cách xếp, mỗi cách xếp đều cho tar 6 khe trống.
`->` Cần xếp 3 quyển Hóa vào 6 khe trống đó.
`->` Số cách xếp là: `5!.`\(A_6^3\)`=14400`.
Coi 8 cuốn sách toán như 1 cuốn
=>Cần xếp 13 cuốn vào 13 vị trí khác nhau
=>Có 13! cách
Số cách xếp 8 cuốn sách toán là 8!(cách)
Số cách xếp là \(13!\cdot8!\)(cách)
Chọn A
|
T.A |
|
T.A |
|
T.A |
|
T.A |
|
T.A |
|
T.A |
|
T.A |
|
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
Gọi Ω là biến cố “xếp quyển sách lên kệ sách một cách tùy ý”
=> n( Ω ) = 14!
A là biến cố “xếp 14 cuốn sách lên kệ sách sao cho hai cuốn sách cùng môn không ở cạnh nhau”.
- Xếp quyển sách Tiếng Anh vào kệ có 7! cách.
- quyển sách Tiếng Anh tạo ra 8 chỗ trống (gồm 6 chỗ trống ở giữa và 2 chỗ trống trước sau).
Đánh số từ 1 đến 8, từ trái sang phải cho các chỗ trống. Khi đó ta xét các trường hợp:
TH1: Xếp sách Văn hoặc Toán vào vị trí từ 1 đến 7 có 7! cách.
TH2: Xếp sách Văn hoặc Toán vào vị trí từ 2 đến 8 có 7! cách.
TH3: Xếp cặp sách Văn – Toán chung vào ngăn, các ngăn 3,4,5,6,7 xếp tùy ý số sách còn lại. Ta có:
+ Số cách chọn cặp sách Văn – Toán: 3.4 cách.
+ Vị trí 2 cuốn sách trong cặp sách: 2! cách.
+ Xếp các sách còn lại vào các ngăn 3,4,5,6,7 có 5! cách
Vậy ta có số cách xếp 1 cặp sách Văn – Toán chung vào ngăn 2, các ngăn 3,4,5,6,7 xếp tùy ý số sách còn lại là 3.4.2!.5! cách.
Tương tự cho xếp cặp sách Văn – Toán lần lượt vào các ngăn 3,4,5,6,7
Số trường hợp thuận lợi của biến cố là
Xếp theo thứ tự: ngữ văn- toán- ngữ văn- toán- ngữ văn- toán-ngữ văn-toán- ngữ văn. Vậy có 5.4.4.3.3.2.2.1=2880 cách
Chọn B
B