K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

Do \(xy\ne0\Rightarrow x;y\ne0\)

Ta có : \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

\(\Leftrightarrow b^2x^2+a^2y^2=2axby\)

\(\Leftrightarrow b^2x^2+a^2y^2-2axby=0\)

\(\Leftrightarrow\left(bx-ay\right)^2=0\)

Do \(\left(bx-ay\right)^2\ge0\Rightarrow bx-ay=0\)

\(\Rightarrow bx=ay\)

\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\left(đpcm\right)\)

4 tháng 8 2017

Đặt \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\) \(\left(k\ne0\right)\) \(\Rightarrow\left\{{}\begin{matrix}x=a.k\\y=b.k\\z=c.k\end{matrix}\right.\)

Ta có :

\(A=\dfrac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}\)

\(A=\dfrac{\left[\left(a.k\right)^2+\left(b.k\right)^2+\left(c.k\right)^2\right]\cdot\left(a^2+b^2+c^2\right)}{\left(a.a.k+b.b.k+c.c.k\right)^2}\)

\(A=\dfrac{\left(a^2k^2+b^2k^2+c^2k^2\right)\cdot\left(a^2+b^2+c^2\right)}{\left(a^2k+b^2k+c^2k\right)^2}\)

\(A=1\)

23 tháng 9 2018

Ta có: (a2 + b2)(x2 + y2)

= (ax)2 + a2y2 + b2x2 + (by)2

= (ax + by)2 - 2abxy + a2y2 + b2x2

= (ax + by)2 + (a2y2 + b2x2 - 2abxy)

Mà (a2 + b2)(x2 + y2) = (ax + by)2

\(\Rightarrow\) a2y2 + b2x2 - 2abxy = 0

\(\Rightarrow\) \(\left(ay\right)^2-2.ay.bx+\left(bx\right)^2=0\)

\(\Rightarrow\) \(\left(ay-bx\right)^2=0\)

\(\Rightarrow\) \(ay=bx\)

\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\) (đpcm)

26 tháng 2 2018

Phương Ann Nhã Doanh đề bài khó wá Mashiro Shiina Đinh Đức Hùng

Nguyễn Huy Tú Lightning Farron Akai Haruma

6 tháng 10 2017

2) ta có: \(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)\)\(VP=\left(ax+by\right)^2\)

tính hiệu của cả VT và VP

suy ra: \(\left(ay+bx\right)^2=0\Rightarrow ay=bx\)

\(x,y\ne0\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\left(đpcm\right)\)

3)(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2 (1)

biến đổi đẳng thức (1) thành (ay+bx)2 + (bz-cy)2 +(az-cx)2 =0

\(\Rightarrow\) Đpcm

AH
Akai Haruma
Giáo viên
9 tháng 11 2021

Lời giải:

Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$

$\Rightarrow x=at; y=bt; z=ct$. Ta có:

$(x+y+z)^2=(at+bt+ct)^2=t^2(a+b+c)^2=t^2(*)$

Mặt khác:

$x^2+y^2+z^2=(at)^2+(bt)^2+(ct)^2=t^2(a^2+b^2+c^2)=t^2(**)$

Từ $(*); (**)\Rightarrow (x+y+z)^2=x^2+y^2+z^2$ (đpcm)

9 tháng 11 2021

em cảm ơn cô/thầy nhiều

28 tháng 7 2017

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2abxy+b^2y^2=0\)\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-2abxy-b^2y^2=0\)\(\Leftrightarrow a^2y^2-2abxy+b^2x^2=0\)

\(\Leftrightarrow\left(ay-bx\right)^2=0\)

\(\Rightarrow ay-bx=0\)

\(\Leftrightarrow ay=bx\)

\(\Rightarrow\dfrac{a}{x}=\dfrac{y}{b}\)

=> đpcm