cho a,b,c>0 và \(\frac{1}{a}+\frac{1}{b}=\frac{2}{c}\)
chứng minh \(ab\ge c^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )
=>đpcm
Cô si
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)
Cộng lại ta có:
\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)
Vì a, b, c > 0
Ta có \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel
\(VT=\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{\left(1+1+1\right)^2}{3+\left(ab+bc+ca\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}a=b=c\\\frac{1}{1+ab}=\frac{1}{1+bc}=\frac{1}{1+ca}\end{cases}}\) \(\Leftrightarrow\) \(a=b=c\)
ko biết đúng hay sai
Theo cosi ab+bc+ac≥3\(\sqrt[3]{a^2b^2c^2}\) nên abc=<1/3
quy đồng thay abc=<1/3 vô
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
bài 1. ta có
\(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
\(\Leftrightarrow b^2+ab+\frac{a^2}{4}+c^2+ac+\frac{a^2}{4}+d^2+ad+\frac{a^2}{4}+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow\left(b+\frac{a}{2}\right)^2+\left(c+\frac{a}{2}\right)^2+\left(d+\frac{a}{2}\right)^2+\frac{a^2}{4}\ge0\) luôn đúng
Bài 2
ta có \(\frac{a^5}{b^5}+1+1+1+1\ge\frac{5.a}{b}\) (bất đẳng thức cauchy)
Tương tự ta có \(\frac{b^5}{c^5}+4\ge\frac{5b}{c};\frac{c^5}{a^5}+4\ge\frac{5c}{a}\)
\(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\)
Mà dễ dàng chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)
Nên ta có \(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
bài 1 : \(^{a^2+B^2+C^2+D^2}\)>hoặc =ab+ac+ad
\(^{a^2+b^2+c^2}\)- ab-ac-ad>hoặc = 0
\((\frac{1}{4}^{a^2-ab+b^2})+(\frac{1}{4}^{a^2-ac+c^2})+(\frac{1}{4}^{a^2-ad+d^2})\)>hoặc =0
\((\frac{1}{2}a-b)^2+(\frac{1}{2}a-c)^2+(\frac{1}{2}a-d)^2>=0\)
Vì \((\frac{1}{2}a-b)^2>=0\)với mọi \(A,b\varepsilon n\)
=> đpcm tự kết luận
\(P=\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\)
\(P\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}=\frac{1}{1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}\ge\frac{1}{1+\left(a+b+c\right)}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)
\(\Rightarrow\frac{1}{c}\ge\frac{1}{\sqrt{ab}}\Rightarrow c\le\sqrt{ab}\)
\(\Rightarrow ab\ge c^2\)
Áp dụng bđt Cô si cho 2 số dương :
\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)
\(\Rightarrow\frac{2}{c}\ge\frac{2}{\sqrt{ab}}\)
\(\Rightarrow c\le\sqrt{ab}\)
\(\Rightarrow c^2\le ab\)
Dấu "=" xảy ra <=> a=b=c