Tìm GTNN của: C=\(\dfrac{y^2+15y+16}{3y}\)với y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=\(5x+3y+\dfrac{12}{x}+\dfrac{16}{y}\)
=\(3x+\dfrac{12}{x}+y+\dfrac{16}{y}+2\left(x+y\right)\)
AD BĐT cô si :
Ta có \(3x+\dfrac{12}{x}\ge2\sqrt{3x.\dfrac{12}{x}}=2\sqrt{36}=12\)
\(y+\dfrac{16}{y}\ge2\sqrt{y.\dfrac{16}{y}}=2\sqrt{16}=8\)
\(2\left(x+y\right)\ge2.6=12\)
=> P\(\ge12+8+12=32\)
Dấu = xra \(\left\{{}\begin{matrix}3x=\dfrac{12}{x}\\y=\dfrac{16}{y}\\x+y=6\end{matrix}\right.\)\(\Leftrightarrow\left(x;y\right)=\left(2;4\right)\)
Vậy GTNN của P=32 khi (x;y)=(2;4)
Bài 2. Áp dụng BĐT Cauchy dưới dạng Engel , ta có :
\(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\) ≥ \(\dfrac{\left(1+4+9\right)^2}{x+y+z}=196\)
⇒ \(P_{MIN}=196."="\) ⇔ \(x=y=z=\dfrac{1}{3}\)
Ta có: \(\left(x-1\right)^2+\left(x+y\right)^2\le9\Rightarrow x+y\le3\).
Áp dụng bất đẳng thức AM - GM ta có:
\(\dfrac{2}{x}+2x\ge2\sqrt{\dfrac{2}{x}.2x}=4;\dfrac{4}{y}+y\ge2\sqrt{\dfrac{4}{y}.y}=4\).
Do đó \(\dfrac{2}{x}\ge4-2x;\dfrac{4}{y}\ge4-y\)
\(\Rightarrow P\ge8-4\left(x+y\right)\ge-4\). (do \(x+y\le3\)).
Vậy...
Đẳng thức xảy ra khi và chỉ khi x = 1; y = 2.
Áp dụng bất đẳng thức \(AM-GM\) đối với từng bộ số trong \(D\) ta có:
\(D=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\ge2\sqrt{3x.\frac{12}{x}}+2\sqrt{y.\frac{16}{y}}+2.6=32\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y=6\\3x=\frac{12}{x}\\y=\frac{16}{y}\end{cases}\Leftrightarrow}\) \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy, GTNN của \(D\) là \(32\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Ta có:\(C=\dfrac{y^2+15y+16}{3y}\)
\(\Rightarrow C-\dfrac{23}{3}=\dfrac{y^2+15y+16}{3y}-\dfrac{23}{3}\)
\(\Leftrightarrow C-\dfrac{23}{3}=\dfrac{y^2+15y+16-23y}{3y}\)
\(C-\dfrac{23}{3}=\dfrac{y^2-8y+16}{3y}=\dfrac{\left(y-4\right)^2}{3y}\ge0\)
\(\Rightarrow C\ge\dfrac{23}{3}\)
"="\(\Leftrightarrow\left(y-4\right)^2=0\Leftrightarrow y=4\)