K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2018

Hình như đề bài sai sai ở đâu ý có phải là ( y-z )2

31 tháng 10 2018

đúng đấy bạn ơi

19 tháng 12 2020

Ta có: x+y+z=0

\(\Leftrightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)(1)

Ta có: \(K=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}\)

\(=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2-x^2-y^2-z^2-2xy-2yz-2xz}\)

\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz-2xz\right)}\)

\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)

Vậy: \(K=\dfrac{1}{3}\)

19 tháng 12 2020

\(K=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}\)

\(K=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2}=\dfrac{1}{3}\)

15 tháng 8 2019

x - y + z 2  +  z - y 2  + 2(x – y + z)(y – z)

=  x - y + z 2  + 2(x – y + z)(y – z) +  y - z 2

= x - y + z + y - z 2 = x 2

1 tháng 8 2019

(x + y + z)2 – 2.(x + y + z).(x + y) + (x + y)2

= [(x + y + z) – (x + y)]2 (Áp dụng HĐT (2) với A = x + y + z ; B = x + y)

= z2.

16 tháng 7 2016

\(\left(x+y-z\right)^2+2.\left(x+y-z\right).\left(z-y\right)+\left(y-z\right)^2=\left[\left(x+y-z\right)+\left(z-y\right)\right]^2=x^2\)

Sai đề.

17 tháng 8 2015

=(x-y+z) + 2.(x-y+z).(y-z)+ (y-z)2=(x-y+z+y-z)2=x2

17 tháng 8 2015

 

(x-y+z)+ (z-y)2 + 2.(x-y+z).(y-z)

= (x-y+z)+ (y-z)2 + 2.(x-y+z).(y-z)

=[(x-y+z)+(y-z)]2

=(x-y+z+y-z)2

=x2

6 tháng 7 2015

\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y-z\right)^2\)

\(=x^2\)

9 tháng 9 2018

hằng đẳng thức nha đổi vị trí tth]s 2 xuoong3 và 3 lên 2 ra rồi tự làm nha

9 tháng 9 2018

\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(\left(x-y+z\right)^2+\left(z-y\right)^2-2\left(x-y+z\right)\left(z-y\right)\)

\(\left[\left(x-y+z\right)-\left(z-y\right)\right]^2\)

\(\left(x-y+z-z+y\right)^2\)

\(x^2\)

21 tháng 7 2016

(x-y+z)+ (z-y)+ 2(x-y+z).(y-z)

= (x-y+z)2 + 2(x-y+z)(y-z) + (y-z)2

= (x-y+z+y-z)2

= x2