CMR
a. số có dạng aaa luôn chia hết cho 3
b. tìm những giá trị của a để số aaa chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu số aaa là số tự nhiên thì lời giải là :
aaa chia hết cho 9 =>aaa \(\in\) B(9)
=> aaa \(\in\)(9;81;729;6561;...)
Mà aaa là số có 3 chữ số nên => aaa =729
a) Ta có aaa = 100a+10a+a = 111.a = 37.3.a chia hết cho 3
Tick nha?
a) aaa = 111a = 3.37a chia hết cho 3
b) aaa chia hết cho 9 nên có dạng 9k.Ta có : aaa = 9k => 3.37a = 3.3k => 37a = 3k nên 37a chia hết cho 3 mà 37 ko chia hết cho 3
=> a chia hết cho 3 mà 0 < a < 10 => a = 3 ; 6 ; 9
a, aaa = 100a . 10a . 1a = 100 . 10 . 1 . a . a . a = 111 . 3a
+ 111 chia hết cho 3 và 3a chia hết cho 3
Vậy 111.3a chia hết cho 3
b, Gía trị của aaa là 999 hoặc 666 hoặc 333
aaa chia hết cho 9 thì a+a+a=3a chia hết cho 9
tức là a chia hết ch0 3
a=3 Số 333
a=6 Số 666
a=9 Số 999
a) Ta có: aaa=a.111
=a.3.37 chia hết cho 37
b)Ta có: ab-ba=(10a+b)-(10b+a)
=(10a-a)-(10b-b)
=9a-9b
=9(a-b) chia hết cho 9 (đpcm)
a) Ta có:
aaa = 100a + 10a + a
= 111a
= 3.37.a chia hết cho 37
b) Ta có:
ab - ba = (10a + b) - (10b + a)
= 10a + b - 10b - a
= 9a - 9b
= 9.(a - b) chia hết cho 9
1.Ta có: aaa=a.111=a.37.3 chia hết cho 3.
=>ĐPCM
2.Để aaa=a.111=a.37.3 chia hết cho 9=3.3
=>a.37 chia hết cho 3
mà (37,3)=1
=>a chia hết cho 3
=>a=Ư(3)=(3,6,9)
Vậy a=3,6,9
3.Ta có: a:3(dư 1)=>a=3m+1
b:3(dư 2)=>b=3n+2
=>a.b=(3m+1).(3n+2)=3m.(3n+2)+3n+2=3.(m.(3n+2)+n)+2
=>a.b:3(dư 2)
10.Thiếu dữ kiện về c.
11.Gọi số cần tìm là n.
Để n chia hết cho 3 và 9=>n chia hết cho 9.
Để n chia hết cho 5 và 25=>n chia hết cho 25.
=>n chia hết cho 2,9,11,25
mà (2,9,11,25)=1
=>n chia hết cho 2.9.11.25=4950
mà n nhỏ nhất
=>n=4950
a, \(\overline{aaa}=100a+10a+a=111a=37.3.a⋮3\)
b, Để \(\overline{aaa}⋮9\)thì \(\left(a+a+a\right)⋮9\Rightarrow a\in\left\{3;6;9\right\}\)
aaa=333
aaa=999