cho nửa đường tròn O đường kính AB và dây EF ko cắt AB . I và K lần lượt là chân các đườg vuông góc kẻ từ A B đến EF . chứng minh diện tích IKBA bằg tổng diện tích tam giác AEB và BFA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi cho mình hỏi bước thứ nhất bạn làm theo định lí gì v bạn
Ta có: AI ⊥ EF (gt)
BK ⊥ EF (gt)
Suy ra: AI // BK
Suy ra tứ giác ABKI là hình thang
Kẻ OH ⊥ EF
Suy ra: OH // AI // BK
Ta có: OA = OB (= R)
Suy ra: HI = HK
Hay: HE + EI = HF + FK (1)
Lại có: HE = HF (đường kính dây cung) (2)
Từ (1) và (2) suy ra: IE = KF
cho mình lm vs đề nửa đường tròn hén :
bn tk hình thay K là J thì nó cũng là hình đúm nuôn
Ta có : \(AI\perp EF\)(gt)
\(BJ\perp EF\left(gt\right)\)
=> AI//BJ
Suy ra tứ giác ABJI là hình thang
Kẻ OH ⊥ EF
Suy ra: OH // AI // BJ
Ta có: OA = OB (= R)
Suy ra: HI = HJ
Hay: HE + EI = HF + FJ (1)
Lại có: HE = HF (đường kính dây cung) (2)
Từ (1) và (2) suy ra: IE = JF
Gọi G là giao điểm của AH và EF
Tứ giác AEHF là hình chữ nhật => AH = EF
Do đó EF là tiếp tuyến của đường tròn (I)
Tương tự, EF là tiếp tuyến của đường tròn (K)
gọi O là tâm đường tròn đường kính AB
Kẻ OE vuông góc vs CD (E thuộc CD)
suy ra E là trung điểm của CD
Mà OE là đường trung bình của hình thang ABKH (đi qua trung điểm một cạnh bên và song song vs cạnh đáy)
suy ra EH=EK mà EC=ED Suy ra đpcm