K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2018

ghhxm m,cfjhnnnbn 

27 tháng 10 2018

C1 : x=2

C2 : x=3

đơn giản mak bn

20 tháng 6 2017

 -2/x=y/3 

=> -2.3 = xy

xy= -6 

Mà x>0>y => x là số nguyên âm còn y là số nguyên dương

Lập bảng ( cái này bn tự lâp)

=> Các cặp số nguyên x,y là: x=-2,y=3  ; x= -3,y=2; x=-1,y=6 ; x=-6,y= 1   

20 tháng 6 2017

Do x-y = 4 => x= 4+y

thjays x=4+y vào x-3/y-2=3/2, có:

x-3/y-2=3/2 = 4+y-3/y-2 = 3/2 = y+1/y-2=3/2

=> 2(y+1)= 3(y-2)

2y+2 = 3y-6

3y-2y = 2+6

y=8

thay y= 8 vào x=4+y, có:

x= 4+ 8 = 12

vạy x=12; y=8

30 tháng 4 2020

a) Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+1\ge1\forall x\)

\(\Rightarrow\left(x-2\right)\left(x^2+1\right)>0\)\(\Leftrightarrow x-2>0\)\(\Leftrightarrow x>2\)

Vậy \(x>2\)

b) \(\left(x+5\right)\left(2-x\right)< 0\)

TH1: \(\hept{\begin{cases}x+5>0\\2-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-5\\2< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-5\\x>2\end{cases}}\Leftrightarrow x>2\)

TH2: \(\hept{\begin{cases}x+5< 0\\2-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -5\\2>x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -5\\x< 2\end{cases}}\Leftrightarrow x< -5\)

Vậy \(x< -5\)hoặc \(x>2\)

17 tháng 1 2016

bấm vào chữ 0 đúng sẽ hiện ra kết quả 

olm-logo.png

22 tháng 12 2017

l x l + l y l = 3

=> x thuộc { - 2 , - 1 , 0 , 1 , 2   , 3} mà x > 0 => x thuộc { 1 ; 2 ; 3 }

=> y thuộc { -2 , - 1 ,0 , 1 , 2,3 } mà y < 0 => y thuộc { -2 ; -1 }

Vậy ( x , y ) = ....

22 tháng 12 2017

Ta có\(\left|x\right|+\left|y\right|=3\)

Vì x và y có cùng vai trò nên không mất tính tổng quát ta giả sử \(x\le y\Rightarrow\left|x\right|\ge\left|y\right|\)

Mà x,y<0 nên |x|,|y|>0

Do đó:\(\hept{\begin{cases}\left|x\right|=2\\\left|y\right|=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)(Vì x,y<0)

Vậy \(\left(x,y\right)\in\left\{\left(-1,-2\right),\left(-2,-1\right)\right\}\)

2 tháng 5 2020

a, \(\left(x-2\right).\left(x^2+1\right)>0\) \(\Rightarrow x-2>0\) (vì \(x^2+1>0\forall x\inℤ\) )

                                                         \(\Rightarrow x>2\)

b, \(\left(x+5\right).\left(2-x\right)< 0\) 

\(\Rightarrow\hept{\begin{cases}x>2\\x< -5\end{cases}}\)

NV
1 tháng 2 2019

Với các giá trị nguyên của \(x\ne-1\), để A nguyên thì \(\left(x^5+1\right)⋮\left(x^3+1\right)\)

\(\Leftrightarrow\left(x^5+x^2-\left(x^2-1\right)\right)⋮\left(x^3+1\right)\)

\(\Leftrightarrow\left(x^2\left(x^3+1\right)-\left(x^2-1\right)\right)⋮\left(x^3+1\right)\)

\(\Leftrightarrow\left(x^2-1\right)⋮\left(x^3+1\right)\)

\(\Leftrightarrow\left(x-1\right)⋮\left(x^2-x+1\right)\)

\(\Rightarrow x\left(x-1\right)⋮\left(x^2-x+1\right)\)

\(\Leftrightarrow\left(x^2-x+1-1\right)⋮\left(x^2-x+1\right)\)

\(\Leftrightarrow1⋮\left(x^2-x+1\right)\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=1\\x^2-x+1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-1\right)=0\\\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

25 tháng 1 2018

 (x - 3)(x + 2) <0

=> x-3 và x+2 trái dấu

mà x-3 < x+2

\(\Rightarrow\) \(\hept{\begin{cases}x-3< 0\\x+2>0\end{cases}\Rightarrow-3< x< 2}\)

\(\Rightarrow x\in\left\{-2;-1;0;1\right\}\)

25 tháng 1 2018

Có (x-3)(x+2) < 0

Mà x - 3 và x + 2 là hai số khác dấu ; x + 2 > x + 3

\(\Rightarrow\hept{\begin{cases}x-3< 0\\x+2>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 3\\x>-2\end{cases}}\)\(\Rightarrow\)\(-2< x< 3\)

\(\Rightarrow\)\(\in\){ -1;0;1;2 }

Vậy x \(\in\){ -1;0;1;2 }