K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2023

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

9 tháng 7 2023

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

10 tháng 5 2017
x^2 + y^2 + x^2 >= 1/3
<=> x^2 + y^2 + x^2 >= (x + y + z)/3 ( vì x + y + z = 1)
<=> x^2 + y^2 + x^2 - (x + y + z)/3 >= 0
<=> 3x^2 + 3y^2 + 3z^2 - x - y - z >= 0
<=> x(3x - 1) + y(3y - 1) + z(3z - 1) >= 0
<=> x(3x - x - y - z) + y(3y - x - y - z) + z(3z - x - y - z) >= 0
<=> x(2x - y - z) + y(2y - x -z) + z(2z - x - y) >= 0
<=> 2x^2 - xy - xz + 2y^2 - xy - yz + 2z^2 - xz - yz >= 0
<=> (x^2 - 2xy - y^2) + (y^2 - 2yz - z^2) + (x^2 - 2xz - z^2) >= 0
<=> (x - y)^2 + (y - z)^2 - (x - z)^2 >= 0 (đúng)
=> x^2 + y^2 + x^2 >= 1/3

Dấu = xảy ra <=> x = y = z =1/3
10 tháng 5 2017

Cách làm của Nguyễn Đặng Thanh Trúc hơi dài , mik làm cchs khác nhé :

==================

Áp dụng BDDT Co- si dạng engel

Ta có : x2 + y2 + z2 \(\ge\dfrac{\left(x+y+z\right)^2}{1+1+1}=\dfrac{1}{3}\)

Dấu "=" xảy ra khi : x=y=z =1/3

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Đề lỗi công thức rồi. Bạn xem lại.