K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2022

a: Xét ΔMDC có góc DMC=góc C

nên ΔDMC cân tại D

b: Xét tứ giác AEMD có

AE//MD

AD//ME

Do đó: AEMD là hình bìnhhành

Suy ra: AE=MD=CD

c: Gọi giao của FM với ED là G

=>G là trung điểm của MF

Gọi giao của MA và ED là H

=>H là trung điểm chung của MA và ED

Xét ΔMAF có MG/MF=MH/MA

nên GH//AF

=>AF//ED

Vì F đối xứng với M qua ED

nên EF=EM=AD

Xét tứ giác AEDF có

AF//DE

AD=FE

Do đó: AEDF là hình thang cân

30 tháng 9 2016

gấp lắm rồi các bạn làm hộ mjnh nha

30 tháng 9 2016

đợi tí nha

23 tháng 10 2017

Ribi Nkok Ngok

6 tháng 1 2021

 

a)Xét tứ giác AFDE có :góc AED = 90°(gt)góc EAF = 90 °(gt)góc AFD =90 °(gt)=> Tứ giác AFDE là hình chữ nhật ( dhnb)(đcpcm)

AH
Akai Haruma
Giáo viên
20 tháng 11 2021

Lời giải:

a. $E$ đối xứng với $M$ qua $AC$ 

$\Rightarrow AC$ là trung trực của $ME$

$\Rightarrow AC\perp ME$ tại trung điểm $P$ của $ME$

$\Rightarrow \widehat{P}=90^0$

Tứ giác $MQAP$ có 3 góc $\widehat{A}=\widehat{Q}=\widehat{P}=90^0$ nên là hcn 

$\Rightarrow AM=PQ$

b.

$AP\perp ME$

$QM\perp ME$ (do $AQMP$ là hcn)

$\Rightarrow AP\parallel QM$

$\Rightarrow AP\parallel FM$

Áp dụng định lý Talet:

$\frac{AP}{FM}=\frac{EP}{EM}=\frac{1}{2}$

$\Rightarrow 2AP=FM=FQ+QM$

Mà $AP=QM$ (do $AQMP$ là hcn)

$\Rightarrow 2AP=FQ+AP\Rightarrow AP=FQ$

$\Rightarrow QM=FQ$

Ta thấy $FM\perp AB$ tại $Q$ mà $FQ=QM$ nên $F,M$ đối xứng nhau qua $Q$

AH
Akai Haruma
Giáo viên
20 tháng 11 2021

Hình vẽ: