K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay x=2 vào (d'), ta được:

\(y=\dfrac{3}{2}\cdot2-3=3-3=0\)

Thay x=2 và y=0 vào (d), ta được:

\(2\left(m-3\right)+3=0\)

\(\Leftrightarrow2m-3=0\)

hay \(m=\dfrac{3}{2}\)

b: Để (d) vuông góc với (d1) thì \(2\left(m-3\right)=-1\)

\(\Leftrightarrow m-3=-\dfrac{1}{2}\)

hay \(m=\dfrac{5}{2}\)

b: Để (d) vuông góc với (d1) thì \(2\left(m-3\right)=-1\)

\(\Leftrightarrow m-3=-\dfrac{1}{2}\)

hay \(m=\dfrac{5}{2}\)

19 tháng 2 2021

a, - Xét phương trình hoành độ giao điểm :\(x^2=\left(m-2\right)x-m+3\)

\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\left(I\right)\)

\(\Delta=b^2-4ac=\left(m-2\right)^2-4\left(m-3\right)\)

\(=m^2-4m+4-4m+12=m^2-8m+16=\left(m-4\right)^2\)

- Để P cắt d tại 2 điểm phân biệt <=> PT ( I ) có 2 nghiệm phân biệt .

<=> \(\Delta>0\)

\(\Leftrightarrow\left(m-4\right)^2>0\)

\(\Leftrightarrow m\ne4\)

Vậy ...

b, Hình như đề thiếu giá trị của cạnh huỳnh hay sao á :vvvv

 

a) Phương trình hoành độ giao điểm là: 

\(x^2=\left(m-2\right)x-m+3\)

\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\)

\(\Delta=\left(m-2\right)^2-4\cdot\left(m-3\right)=m^2-4m+4-4m+12=m^2-8m+16\)

Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow m^2-8m+16>0\)

\(\Leftrightarrow\left(m-4\right)^2>0\)

mà \(\left(m-4\right)^2\ge0\forall m\)

nên \(m-4\ne0\)

hay \(m\ne4\)

Vậy: khi \(m\ne4\) thì (d) cắt (P) tại hai điểm phân biệt

22 tháng 11 2023

loading...  loading...  loading...  loading...  loading...  

28 tháng 10 2023

Sửa đề: (d): y=(m-3)x-2m+2

a: Để hàm số đồng biến thì m-3>0

=>m>3

b: Khi m=2 thì (d): y=(2-3)x-2*2+2=-x-2

loading...

 

c: Để hai đường song song thì

\(\left\{{}\begin{matrix}3m+1=m-3\\-2m+2< >4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=-4\\-2m< >2\end{matrix}\right.\Leftrightarrow m=-2\)

d: tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(m-3\right)x-2m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2m-2}{m-3}\end{matrix}\right.\)

=>\(OA=\left|\dfrac{2m-2}{m-3}\right|\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=0\left(m-3\right)-2m+2=-2m+2\end{matrix}\right.\)

=>\(OB=\left|-2m+2\right|=\left|2m-2\right|\)

ΔOAB vuông cân tại O

=>OA=OB

=>\(\left|2m-2\right|=\left|\dfrac{2m-2}{m-3}\right|\)

=>\(\left|2m-2\right|\left(\dfrac{1}{\left|m-3\right|}-1\right)=0\)

=>\(\left[{}\begin{matrix}2m-2=0\\m-3=1\\m-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=4\\m=2\end{matrix}\right.\)

5 tháng 6 2021

G/s (P),(d),(d1) cùng đi qua một điểm

Gọi I(a,b) là giao điểm của (P),(d),(d1)

Có \(I\in\left(P\right),\left(d\right),\left(d1\right)\)\(\Rightarrow\left\{{}\begin{matrix}b=a^2\left(1\right)\\b=a+2\left(2\right)\\b=-a+m\left(3\right)\end{matrix}\right.\)

Từ (1);(2)\(\Rightarrow a^2=a+2\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-1\end{matrix}\right.\)

TH1: Tại \(a=2\Rightarrow b=a^2=4\)

Thay \(a=2;b=4\) vào (3) ta được:\(4=-2+m\) \(\Leftrightarrow m=6\)

TH2: Tại \(a=-1\Rightarrow b=a^2=1\)

Thay \(a=-1;b=1\) vào (3) ta được:\(1=1+m\) \(\Leftrightarrow m=0\)

Vậy m=6 hoặc m=0

5 tháng 6 2021

Phương trình hoành độ giao điểm của (d) và (P):

\(x^2=x+2\)

\(\Leftrightarrow x^2-x-2=0\)(*)

Ta có: \(a-b+c=1-\left(-1\right)+\left(-2\right)=0\)

Do đó phương trình (*) có 2 nghiệm phân biệt

\(x_1=-1;x_2=\dfrac{-c}{a}=2\)

\(x_1=-1\) thì \(y_1=x_1^2=\left(-1\right)^2=1\)

\(x_2=2\) thì \(y_2=x_2^2=2^2=4\)

Vậy (d) và (P) cắt nhau tại 2 điểm phân biệt \(A\left(-1;1\right);B\left(2;4\right)\)

Do đó các đồ thị của (P), (d) và \(\left(d_1\right)\)cùng đi qua 1 điểm 

\(\Leftrightarrow\left[{}\begin{matrix}A\in\left(d_1\right)\\B\in\left(d_1\right)\end{matrix}\right.\)               \(\Leftrightarrow\left[{}\begin{matrix}1=1+m\\4=-2+m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=6\end{matrix}\right.\)

Vậy khi m=0 hoặc m=6 thì các đồ thị của (P),(d) và cùng đi qua 1 điểm

-Chúc bạn học tốt-

26 tháng 2 2023

a)

\(\left(P\right):y=x^2\)

Ta có bảng

x-2-1012
y41014

Vậy đồ thị hàm số \(y=x^2\) là một parabol lần lượt đi qua các điểm 

\(\left(-2;4\right),\left(-1;1\right),\left(0;0\right),\left(1;1\right),\left(2;4\right)\)

Bạn tự vẽ nhé

\(\left(d\right):y=-2x+3\)

Cho \(y=0\Rightarrow x=\dfrac{3}{2}\Rightarrow A\left(\dfrac{3}{2};0\right)\in Ox\)

Cho \(x=0\Rightarrow y=3\Rightarrow B\left(0;3\right)\in Oy\)

Vẽ đường thẳng AB ta được đths \(y=-2x+3\)

Bạn tự bổ sung vào hình vẽ nhé

b) Xét PTHĐGĐ của \(\left(P\right),\left(d\right)\) là nghiệm của phương trình

\(x^2=-2x+3\\ \Leftrightarrow x^2+2x-3=0\)

Xét \(a+b+c=1+2-3=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Với `x=1 => y=x^2 = 1`

Với `x=2 => y=x^2 = 4`

Vậy tọa độ giao điểm của \(\left(P\right),\left(d\right)\) là 2 điểm \(\left(1;1\right)\) và \(\left(2;4\right)\)