K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

Lời giải:

a) Chọn một đội gồm $12$ người từ $15+10=25$ người có số cách chọn là: \(C^{12}_{25}\)

b) Bạn xem lại đề.

8 tháng 5 2019

12 tháng 5 2018

Chọn B

Số cách chọn một bạn nam và một bạn nữ để hát song ca là C 6 1 . C 4 1   =   24  

30 tháng 5 2018

Số cách chọn là: 6 . 4 = 24  (cách).

Chọn: B

9 tháng 2 2018

Vì trong 5 người được chọn phải có ít nhất 1 nữ và ít nhất phải có 2 nam nên số học sinh nữ gồm 1 hoặc 2 hoặc 3 nên ta có các trường hợp sau:

- Chọn 1 nữ và 4 nam.

 +) Số cách chọn 1 nữa: 5 cách

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:  A 15 2

 +) Số cách chọn 2 nam còn lại:  C 13 2

Suy ra có 5 A 15 2 C 13 2  cách chọn cho trường hợp này.

- Chọn 2 nữ và 3 nam.

 +) Số cách chọn 2 nữ: C 5 2  cách.

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:  A 15 2 cách.

 +) Số cách chọn 1 còn lại: 13 cách.

Suy ra có  13 A 15 2 C 5 2  cách chọn cho trường hợp này.

- Chọn 3 nữ và 2 nam.

 +) Số cách chọn 3 nữ :  C 5 3  cách.

 +) Số cách chọn 2 làm đội trưởng và đội phó:  A 15 2  cách.

Suy ra có  A 15 2 C 5 2  cách chọn cho trường hợp 3.

Vậy có 5 A 15 2 C 13 2 + 13 A 15 2 . C 5 2 + A 15 2 . C 5 3 = 111300  cách.

Chọn đáp án D.

25 tháng 12 2019

Vì trong 5 người được chọn phải có ít nhất 1 nữ và ít nhất phải có 2 nam nên số học sinh nữ gồm 1 hoặc 2 hoặc 3 nên ta có các trường hợp sau:

 chọn 1 nữ và 4 nam.

 +) Số cách chọn 1 nữa: 5 cách

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:  

 +) Số cách chọn 2 nam còn lại:

Suy ra có  cách chọn cho trường hợp này.

 chọn 2 nữ và 3 nam.

 +) Số cách chọn 2 nữ:  cách.

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:   cách.

 +) Số cách chọn 1 còn lại: 13 cách.

Suy ra có  cách chọn cho trường hợp này.

 Chọn 3 nữ và 2 nam.

 +) Số cách chọn 3 nữ :  cách.

 +) Số cách chọn 2 làm đội trưởng và đội phó:  cách.

Suy ra có  cách chọn cho trường hợp 3.

Vậy có  cách.

Chọn D.

30 tháng 6 2017

Vì trong 5 người được chọn phải có ít nhất 1 nữ và ít nhất phải có 2 nam nên số học sinh nữ gồm 1 hoặc 2 hoặc 3 nên ta có các trường hợp sau:

Chọn 1 nữ và 4 nam.

 +) Số cách chọn 1 nữa: 5 cách

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:  A 15 2

 +) Số cách chọn 2 nam còn lại:  C 13 2

Suy ra có 5 A 15 2 . C 13 2  cách chọn cho trường hợp này.

Chọn 2 nữ và 3 nam.

 +) Số cách chọn 2 nữ: C 5 2  cách.

 +) Số cách chọn 2 nam làm đội trưởng và đội phó: A 15 2 cách.

 +) Số cách chọn 1 còn lại: 13 cách.

Suy ra có 13 A 15 2 . C 5 2  cách chọn cho trường hợp này.

Chọn 3 nữ và 2 nam.

 +) Số cách chọn 3 nữ : C 5 3  cách.

 +) Số cách chọn 2 làm đội trưởng và đội phó: A 15 2  cách.

Suy ra có A 15 2 . C 5 3  cách chọn cho trường hợp 3.

Vậy có 5 A 15 2 . C 13 2 + 13 A 15 2 . C 5 2 + A 15 2 . C 5 3 = 111300  cách.

Chọn đáp án D

23 tháng 6 2017

                            Bài giải 

Với mỗi cách chọn 1 nam thì có số cách chọn 2 nữ là:

Em nữ thứ nhất có thể ghép đôi với 5 em còn lại.

Em nữ thứ 2 có thể ghép đôi với 4 em còn lại (trừ em đầu tiên)

Em nữ thứ 3 có thể ghép đôi với 3 em còn lại (trừ em đầu tiên và em thứ 2)

Em nữ thứ 4 có thể ghép đôi với 2 em còn lại (trừ em thứ nhất,thứ 2 và thứ 3)

Em nữ thứ 5 có thể ghép đôi với 1 em còn lại (trừ em thứ nhất, thứ 2 , thứ 3 và thứ 4).

Vậy có số cách ghép 2 nữ là:

                    5 + 4 + 3 + 2 + 1 = 15 (cách)

Vậy cô giáo có số cách chọn 1 nam và 2 nữ vào hát tốp ca nam nữ là:

                   4 x 15 = 60 (cách)

                             Đáp số: 60 cách.

23 tháng 6 2017

Tự biên tự diễn àk

24 tháng 9 2021

a) Nếu trong \(5\) học sinh phải có ít nhất \(2\) học sinh nữ và \(2\) học sinh nam thì có \(2\) trường hợp :

\(2\) nam \(3\) nữ, có : \(C^2_{10}.C^3_{10}\) cách: 

\(3\) nam và \(2\) nữ, có : \(C^3_{10}.C^2_{10}\)  cách:

Vậy tất cả có : \(2.C^2_{10}.C^3_{10}=10800\) cách.

b) Nếu trong \(5\)  học sinh phải có ít nhất \(1\) học sinh nữ và \(1\) học sinh nam thì có 4 trường hợp :

\(1\) nam và \(4\) nữ, có: \(C^1_{10}.C^4_{10}\) cách.

\(2\) nam và \(3\) , có : \(C^2_{10}.C^3_{10}\) cách.

Còn lại bn tự lm nha, mỏi tay quá

9 tháng 9 2015

Số cách chọn 1 bạn nữ là 6 cách(có 6 bạn)

Số cách chọn 1 bạn nam là 4 cách(có 4 bạn)

=>Có số cách chọn 1 bạn nữ và 1 bạn nam là:

                        4.6=24(cách)