Chứng minh: \(\frac{3}{4!}+\frac{3}{5!}+\frac{3}{6!}+...+\frac{3}{100!}\)<\(\frac{1}{3!}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D< \frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\)
\(=\frac{1}{1.2.3}-\frac{1}{98.99.100}=\frac{1}{6}-\frac{1}{98.99.10}< \frac{1}{6}\left(ĐPCM\right)\)
Đặt S bằng tổng dãy số trên.
=>S=3/4!+3/5!+.....+3/100!
=>S<3/4!+4/5!+.....+99/100!
=>S<1/3!-1/4!+1/4!-1/5!+.....+1/99!-1/100!
=>S<1/3!-1/100!
=>S<1/3!.Vậy S<1/3!
haaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\)\(\frac{1}{99.100}=\)\(1-\frac{1}{100}< 1\)
Mà A=1+B=>A=1+B<1+1=2
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
vậy \(A=\frac{99}{100}< 2\left(đpcm\right)\)
B)
ta có : \(1=1\)
\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)
\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{7}< \frac{1}{4}+...+\frac{1}{4}=\frac{4}{4}=1\)
\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+...+\frac{1}{8}=\frac{8}{8}=1\)
\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{63}< 1\)
tất cả công lại \(\Rightarrow B< 6\)
\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}\)
\(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+....+\frac{19}{81.100}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow A< 1\text{(đpcm) }\)
Ta có: 1/2^2 < 1/1.2
1/3^2 < 1/2.3
.........................
.......................................
1/100^2 < 1/99.100
Ta có: 1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1/1.2 + 1/2.3 + 1/3.4 + ...... + 1/99.100
1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1 - 1/100
1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 99/100 < 3/4
1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 3/4
Ta có: 1/2^2 < 1/1.2
1/3^2 < 1/2.3
.........................
.......................................
1/100^2 < 1/99.100
Ta có: 1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1/1.2 + 1/2.3 + 1/3.4 + ...... + 1/99.100
1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 1 - 1/100
1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 99/100 < 3/4
1/2^2 + 1/3^2 + 1/4^2 +......+1/100^2 < 3/4
Đặt \(A=\frac{4}{4!}-\frac{1}{4!}+\frac{5}{5!}-\frac{2}{5!}+\frac{6}{6!}-\frac{3}{6!}+...+\frac{100}{100!}-\frac{97}{100!}\) ta có :
\(A=\frac{1}{3!}-\frac{1}{4!}+\frac{1}{4!}-\frac{2}{5!}+\frac{1}{5!}-\frac{3}{6!}+...+\frac{1}{99!}-\frac{97}{100!}\)
\(A=\frac{1}{3!}-\frac{1}{5!}-\frac{2}{6!}-...-\frac{95}{99!}-\frac{97}{100!}\)
\(A=\frac{1}{3!}-\left(\frac{1}{5!}+\frac{2}{6!}+...+\frac{95}{99!}+\frac{97}{100!}\right)< \frac{1}{3!}\) ( đpcm )
Vậy \(A< \frac{1}{3!}\)
Chúc bạn học tốt ~
thanks