K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2022

A=3+5+7+...+49

Số số hạng là (49-3):2+1=46:3+1=24 số

Tổng là (49+3)*24/2=52*12=624

=>\(B=\dfrac{4-624}{217}=\dfrac{-620}{217}=-\dfrac{20}{7}\)

1 tháng 3 2019

Chỗ phức tạp là ở biểu thức trong ngoặc thôi

Ta có

\(\dfrac{1}{8}+\dfrac{1}{8\cdot15}+\dfrac{1}{15\cdot22}...+\dfrac{1}{43\cdot50}\)

\(=\dfrac{1}{8}\cdot\left[\dfrac{1}{7}\left(\dfrac{1}{8}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{22}+....+\dfrac{1}{43}-\dfrac{1}{50}\right)\right]\)

\(=\dfrac{1}{8}\cdot\left[\dfrac{1}{7}\left(\dfrac{1}{8}-\dfrac{1}{50}\right)\right]=\dfrac{1}{8}\cdot\dfrac{3}{200}=\dfrac{3}{1600}\)

20 tháng 7 2020

1/7 là do mẫu cách nhau 7 đơn vị đúng ko

29 tháng 1 2020

\(\frac{4-3-5-7-...-49}{217}\)

\(\Rightarrow\frac{4-\left(3+5+7+...+49\right)}{217}\)

\(\Rightarrow\frac{4-[(49+3).[(49-3):2+1]:2]}{217}\)(Theo  Công Thức Tính Tổng)

\(\Rightarrow\frac{4-624}{217}\)

\(\Rightarrow\frac{-620}{217}\)

\(\Rightarrow\frac{-20}{7}\)

11 tháng 2 2018

\(B=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\frac{2^2}{7^2}-\frac{4}{343}}\)

\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{\frac{8}{2}-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(B=\frac{\frac{343}{343}-\frac{49}{343}+\frac{7}{343}-\frac{1}{343}}{4-\frac{4}{7}+\frac{28}{343}-\frac{4}{343}}\)

\(B=\frac{\frac{300}{343}}{\frac{28}{7}-\frac{4}{7}+\frac{24}{343}}\)

\(B=\frac{\frac{300}{343}}{\frac{24}{7}+\frac{24}{343}}\)

\(B=\frac{\frac{300}{343}}{\frac{1323}{343}+\frac{24}{343}}\)

\(B=\frac{300}{343}:\frac{1347}{343}\)

\(B=\frac{100}{449}\)

11 tháng 2 2018

\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

\(A=\frac{2^{12}.3^5-2^{12}.3^6}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^6}{5^9.7^3+5^9.2^3.7^3}\)

\(A=\frac{2^{12}.3^5\left(1-3\right)}{2^{12}.3^5.\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7^3\right)}{5^9.7^3.\left(1+8\right)}\)

\(A=\frac{-2}{4}-\frac{5.\left(-342\right)}{9}\)

\(A=\frac{-1}{2}+\frac{1710}{9}\)

\(A=\frac{-1}{2}+190\)

\(A=\frac{-1}{2}+\frac{380}{2}\)

\(A=\frac{379}{2}\)

11 tháng 2 2018

\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

\(=\dfrac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\dfrac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3\right)^3.7^3+5^9.\left(2.7\right)^3}\)

\(=\dfrac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)

= \(\dfrac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\dfrac{5^{10}.7^3\left(1-7\right)}{5^9.7^3\left(1+2^3\right)}\)

= \(\dfrac{2}{3.4}-\dfrac{5\left(-6\right)}{9}\)

= \(\dfrac{7}{2}\)

13 tháng 2 2022

A -\(\dfrac{24}{25}\)

B -\(\dfrac{5}{21}\)

C -\(\dfrac{24}{47}\)

D -\(\dfrac{19}{42}\)

tick cho mk

13 tháng 2 2022

trả lời hẳn ra sao bạn cứ chỉ ghi kết quả thế

\(\sqrt{\dfrac{16}{49}}+\left(\dfrac{1}{2}\right)^3-\left|-\dfrac{4}{7}\right|-\dfrac{7}{8}\)

\(=\dfrac{4}{7}+\dfrac{1}{8}-\dfrac{4}{7}-\dfrac{7}{8}\)

\(=\dfrac{1}{8}-\dfrac{7}{8}=-\dfrac{6}{8}=-\dfrac{3}{4}\)

\(\left|\dfrac{1}{2}-\dfrac{3}{5}\right|\cdot\sqrt{9}+0,5\left(-2\dfrac{3}{5}\right)\)

\(=\left|\dfrac{5-6}{10}\right|\cdot3+\dfrac{1}{2}\cdot\dfrac{-13}{5}\)

\(=\dfrac{1}{10}\cdot3+\dfrac{1}{2}\cdot\dfrac{-13}{5}\)

\(=\dfrac{3}{10}-\dfrac{13}{10}=-\dfrac{10}{10}=-1\)

\(log_3\sqrt{3}=log_33^{\dfrac{1}{2}}=\dfrac{1}{2}\)

\(lne^3=log_ee^3=3\)

\(log_{27}3=log_{3^3}3=\dfrac{1}{3}\)

\(\log_{\sqrt{3}}3=log_{3^{\dfrac{1}{2}}}3=1:\dfrac{1}{2}=2\)

\(\log_{0,125}2=log_{2^{-3}}2=\dfrac{1}{-3}\)

\(\log_{\sqrt[3]{49}}7=\log_{7^{\dfrac{2}{3}}}7=1:\dfrac{2}{3}=\dfrac{3}{2}\)

\(\log_{\dfrac{1}{125}}5=\log_{5^{-3}}5=-\dfrac{1}{3}\)

\(\log_84=log_{2^3}2^2=\dfrac{1}{3}\cdot2=\dfrac{2}{3}\)

\(\log_{25}\left(\dfrac{1}{5}\right)=\log_{5^2}5^{-1}=\dfrac{1}{2}\cdot\left(-1\right)=-\dfrac{1}{2}\)

\(\log_{\dfrac{1}{5}}\sqrt{5}=\log_{5^{-1}}5^{\dfrac{1}{2}}=\dfrac{1}{-1}\cdot\dfrac{1}{2}=-\dfrac{1}{2}\)

\(log_{\dfrac{1}{7}}\sqrt[5]{49}=\log_{7^{-1}}7^{\dfrac{2}{5}}=\dfrac{1}{-1}\cdot\dfrac{2}{5}=-\dfrac{2}{5}\)

\(\log_4\left(\dfrac{1}{\sqrt{2}}\right)=\log_{2^2}\left(\sqrt{2}\right)^{-1}\)

\(=\log_{2^{-2}}\left(\sqrt{2}\right)^{-\dfrac{1}{2}}=\dfrac{1}{-2}\cdot\dfrac{-1}{2}=\dfrac{1}{4}\)

\(\log_{27}3\sqrt{3}=\log_{3^3}3^{\dfrac{3}{2}}=\dfrac{1}{3}\cdot\dfrac{3}{2}=\dfrac{1}{2}\)