Tìm số a để đa thức 2x3-5x2+8x+a chia hết cho đa thức x2-2x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi x=-1 thì B=2*(-1)^2+1+1=4
b: Để A chia hết cho B thì
\(2x^3-x^2+x+6x^2-3x+3+a-3⋮2x^2-x+1\)
=>a-3=0
=>a=3
c: Để B=1 thì 2x^2-x=0
=>x=0 hoặc x=1/2
\(2x^3+5x^2-2x+a=x\left(2x^2-x+1\right)+3\left(2x^2-x+1\right)-3+a\)
\(=\left(2x^2-x+1\right)\left(x+3\right)-3+a⋮\left(2x^2-x+1\right)\)
\(\Rightarrow-3+a=0\Rightarrow a=3\)
\(2x^3+5x^2-2x+a⋮2x^2-x+1\)
\(\Leftrightarrow2x^3-x^2+x+6x^2-3x+3+a-3⋮2x^2-x+1\)
\(\Leftrightarrow a-3=0\)
hay a=3
A(x) chia hết cho B(x) khi (a + 2)x + b – 1 là đa thức 0
Vậy a + 2 = 0 và b – 1 = 0 ⇒ a = -2 và b = 1
A(x) chia hết cho B(x) khi (a + 2)x + b – 1 là đa thức 0
Vậy a + 2 = 0 và b – 1 = 0 ⇒ a = -2 và b = 1
\(\Leftrightarrow2x^3+x-a=\left(2x-5\right)\cdot a\left(x\right)\)
Thay \(x=\dfrac{5}{2}\Leftrightarrow2\cdot\dfrac{125}{8}+\dfrac{5}{2}-a=0\Leftrightarrow a=\dfrac{135}{4}\)
Ta có A : B
Để giá trị của đa thức A = 2 x 3 – 3 x 2 + 2x + 2 chia hết cho giá trị của đa thức B = x 2 + 1 thì
5 ⁝ ( x 2 + 1)
Hay ( x 2 + 1) Є U(5) = {-1; 1; -5; 5}
+) x 2 + 1 = -1 ó x 2 = -2 (VL)
+) x 2 + 1 = 1 ó x 2 = 0ó x = 0 (tm)
+) x 2 + 1 = -5 ó x 2 = -6 (VL)
+) x 2 + 1 = 5 ó x 2 = 4 ó x = ± 2 ™
Vậy có 3 giá trị của x thỏa mãn đề bài là x = 0; x = -2; x = 2
Đáp án cần chọn là: A
Lời giải
Ta có
Vì phần dư R = 5 ≠ 0 nên phép chia đa thức 3 x 3 – 2 x 2 + 5 cho đa thức 3x – 2 là phép chia có dư. Do đó (I) sai
Lại có
Nhận thấy phần dư R = 0 nên phép chia đa thức ( 2 x 3 + 5 x 2 – 2x + 3) cho đa thức (2 x 2 – x + 1) là phép chia hết. Do đó (II) đúng
Đáp án cần chọn là: D
b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
A(x) chia hết cho B(x) khi (a – 3)x + b + 5 là đa thức 0
⇒ a – 3 = 0 hoặc b + 5 = 0 ⇒ a = 3 hoặc b = -5
\(2x^3-5x^2+8x+a=2x\left(x^2-2x+3\right)-\left(x^2-2x+3\right)+a+3\)
\(\left(2x^3-5x^2+8x+a\right)⋮\left(x^2-2x+3\right)\Leftrightarrow a+3=0\Leftrightarrow a=-3\)