Một vật dao động có phương trình x = 5cos(4\(\pi\) + \(\dfrac{\pi}{3}\) )cm. Tốc độ trung bình của vật trong khoảng thời gian tính từ lúc t=0 đến thời điểm vật đi qua VTCB theo chiều dương lần thứ nhất bằng bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,vật qua vị trí x=-5 => thay x vào phương trình dao động .
2,T=0,4 s=> t=1s=2,5 T=2T+0,5T. 2chu kì sẽ đi qua x=1 bốn lần,thêm một nửa chu kì nữa được 1 lần.tổng cộng là 5 lần. Vẽ đường tròn ra nha cậu
3, denta t= 4,625-1=3,625 s=3,625 T=3T+1/2 T+1/8 T
tại t1=1s,x=căn 2.
quãng đường đi được trong 3,625 T=3. 4A+2A+A căn 2/2 .Vì một ch kì vật đi được 4A,cậu cũng vè đường tròn ra là thấy
S=29,414 cm ,v=S/t= 29,414/3,625=8,11 cm/s.
4.Tự làm nốt nhé,cứ ốp vào dường tròn là ra ngay.
\(T=\dfrac{2\pi}{w}=\dfrac{2\pi}{\pi}=2\left(s\right)\)
Trong 1 nửa chu kì, vật di chuyển được quãng đường là \(2\cdot10=20\left(cm\right)\)
Vật khi đó phải đi từ vị trí có pha bằng \(-\dfrac{\pi}{3}\) đến vị trí có pha bằng \(\dfrac{\pi}{3}\), vì vật sẽ di chuyển được quãng đường \(\dfrac{A}{2}+\dfrac{A}{2}=A=10\left(cm\right)\)
Vậy thời gian vật phải đi là: \(\dfrac{T}{2}+\dfrac{T}{6}=\dfrac{2}{2}+\dfrac{2}{6}=\dfrac{4}{3}\left(s\right)\)
Đối với những bài tìm quãng đường trong khoảng từ t1 đến t2 thì bạn lấy t2-t1 rồi phân tích chúng ra thành \(\left[{}\begin{matrix}t_2-t_1=n.\dfrac{T}{2}+t'\\t_2-t_1=n.T+t''\end{matrix}\right.\) để dễ dàng tính. Tuyệt đối ko được phân tích thành T/4 hay T/3; T/6;T/v.v. bởi nó ko luôn đúng trong các trường hợp, nếu bạn cần mình sẽ lấy ví dụ cụ thể. Giờ mình sẽ áp dụng vô bài của bạn
\(t_2-t_1=\dfrac{17}{3}-2=\dfrac{11}{3}\left(s\right)=3+\dfrac{2}{3}\)
\(T=\dfrac{2\pi}{\pi}=2s\Rightarrow t_2-t_1=3.\dfrac{T}{2}+\dfrac{2}{3}\)
Trong 3T/2 vật đi được quãng đường là: \(S_1=6A=30\left(cm\right)\)
Tại thời điểm t1=2s, lúc này vật đã quay được:\(\varphi=2\pi\left(rad\right)\) nghĩa là quay về vị trí ban đầu
Trong 2/3 s vật quay được góc: \(\varphi=\dfrac{2}{3}\pi\left(rad\right)\)
Sử dụng đường tròn lượng giác, vật ở vị trí có pha là 2pi/3, quay được góc 2pi/3 thì lúc này vật có li độ là: \(x=-2,5\left(cm\right)\)
Nghĩa là vật đi từ vị trí có li độ x1=-2,5 theo chiều âm đến vị trí có li độ x2=-2,5 theo chiều dương, vậy quãng đường vật đi được là: \(S_2=\dfrac{A}{2}+\dfrac{A}{2}=A=5\left(cm\right)\)
Vậy tổng quãng đường vật đi được là: \(S=S_1+S_2=35\left(cm\right)\)
S=30=20+10=T/2+T/6=2T/3
T=2pi/pi=2
=> thời gian = 2*2/3=4/3s
Mỗi câu hỏi bạn nên hỏi 1 bài thôi nhé.
Bài 1:
Áp dụng công thức độc lập thời gian: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)
\(\Rightarrow A^2= 2^2+\dfrac{(4\pi\sqrt 3)^2}{\omega^2}=3^2+\dfrac{(2\pi\sqrt 7)^2}{\omega^2}\)
\(\Rightarrow \omega=2\pi\) (rad/s)
Và \(A=4\) (cm)
Tìm pha ban đầu \(\varphi\) bằng cách: \(\cos(\varphi)=\dfrac{x_1}{A}=\dfrac{1}{2}\)
Ban đầu vật đi theo chiều dương \(\rightarrow \varphi <0\)
\(\Rightarrow \varphi=-\dfrac{\pi}{3}\)
Vậy PT: \(x=4\cos(2\pi t-\dfrac{\pi}{3})\) (cm)
b)
Biểu diễn dao động của vật bằng véc tơ quay như hình vẽ
Thời điểm đầu tiên vật qua x1 theo chiều âm ứng với véc tơ quay từ M đến N
Góc quay \(\alpha =60.2=120^0\)
Thời gian: \(i=\dfrac{120}{360}T=\dfrac{1}{3}s\)
Bài 2:
O chính là vị trí cân bằng với 2 biên là M, N
Thời gian vật đi từ O đến M là T/4
\(\Rightarrow T/4=6\Rightarrow T =24s\)
Biểu diễn dao động điều hoà bằng véc tơ quay ta có:
Vật đi từ O đến trung điểm I của ON ứng với véc tơ quay từ P đến Q
Góc quay: \(\alpha =30^0\)
Thời gian: \(t=\dfrac{30}{360}T=\dfrac{1}{12}.24=2(s)\)