ai lớp 8 thử lm bài này xem nào
A=x^2+xy−2y^2+2x+y+1
B=3x^3+(4−y)x^2−3xy+y^2−4y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
a: \(N=\dfrac{3x^5-4x^4+6x^3}{-2x^2}=-\dfrac{3}{2}x^3+2x^2-3x\)
b: \(N=\dfrac{\left(6x^4y^5-3x^3y^4+\dfrac{1}{2}x^4y^3z\right)}{-\dfrac{1}{3}x^2y^3}=-18x^2y^2+9xy-\dfrac{3}{2}x^2z\)
c: \(\Leftrightarrow N\cdot\left(y-x\right)=\left(x-y\right)^3\)
\(\Leftrightarrow N=\dfrac{\left(x-y\right)^3}{y-x}=-\left(y-x\right)^2\)
d: \(\Leftrightarrow N\cdot\left(y^2-x^2\right)=\left(y^2-x^2\right)^2\)
hay \(N=y^2-x^2\)
Lời giải:
a. $=(x-y)(x+y)=[(-1)-(-3)][(-1)+(-3)]=2(-4)=-8$
b. $=3x^4-2xy^3+x^3y^2+3x^2y+12xy+15y-12xy-12$
$=3x^4-2xy^3+x^3y^2+3x^2y+15y-12$
=3-2.1(-2)^3+1^3.(-2)^2+3.1^2(-2)+15(-2)-12$
$=-25$
c.
$=2x^4+3x^3y-4x^3y-12xy+12xy=2x^4-x^3y$
$=x^3(2x-y)=(-1)^3[2(-1)-2]=-1.(-4)=4$
d.
$=2x^2y+4x^2-5xy^2-10x+3xy^2-3x^2y$
$=(2x^2y-3x^2y)+4x^2+(-5xy^2+3xy^2)-10x$
$=-x^2y+4x^2-2xy^2-10x$
$=-3^2.(-2)+4.3^2-2.3(-2)^2-10.3=0$
\(b,\left(x+2\right)^2-25\)
\(=\left(x+2\right)^2-5^2\)
\(=\left(x-3\right)\left(x+7\right)\)
\(c,36\left(x-y\right)^2\)
\(=36\left(x^2-2xy+y^2\right)\)
\(=36x^2-72xy+36y^2\)
\(d,x^2+\dfrac{1}{2}x+\dfrac{1}{16}\)
\(=x^2+2.x.\dfrac{1}{4}+\dfrac{1}{4}^2\)
\(=\left(x+\dfrac{1}{4}\right)^2\)
\(e,2x^4y^3-3x^2y^4+5x^3y^4\)
\(=x^2y^3\left(2x^2-3y+5xy\right)\)
Các câu còn lại làm tương tự, chú ý sd HĐT
ta có :
4A = 4x2+4xy-8y2+2.2.(2x+y)+4
4A = (2x+y)2 + 2.2.(2x+y)+4 - 9y2
4A= (2x+y+2)2-(3y)2
Tớ giải tới đây đúng chứ ? Còn lại là áp dụng HĐT số 3