K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018

ta có : 

A= (3+3^2)+(3^3+3^4)+.......+ (3^15+3^16)

A=3.(3+1)+3^3.(3+1)+.....+3^15.(3+1)

A= 3.4+3^3.4+......+3^15.4

A=4.(3+3^3+.....+3^15) chia hết cho 4

vậy a chia hết cho 4

25 tháng 10 2018

b. Ta có :

A= (3+3^2+3^3)+......+(3^14+3^15+3^16)

A=3.(1+3+3^2)+.....+3^14.(1+3+3^2)

A=3.13+.....+3^14.13 chia hết cho 13

Vậy A chia hết cho 13

9 tháng 11 2023

1)

a) �=3+32+33+34+35+36+....+328+329+330

⇔�=(3+32+33)+(34+35+36)+....+(328+329+330)

⇔�=3(1+3+32)+34(1+3+32)+....+328(1+3+32)

⇔�=3.13+34.13+....+328.13

⇔�=13(3+34+....+328)⋮13(����)

b) �=3+32+33+34+35+36+....+325+326+327+328+329+330

⇔�=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)

⇔�=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)

⇔�=3.364+....+325.364

⇔�=364(3+35+310+....+325)

 

2) �=3+32+33+....+330

⇔3�=3(3+32+33+....+330)

⇔3�=32+33+34+....+330+331

⇔3�−�=(32+33+34+....+330+331)−(3+32+33+....+330)

⇔2�=331−3

⇔�=331−32

Vậy A không phải là số chính phương
Học tốt nha

22 tháng 10 2021

Bài 5: 

Ta có: \(3n+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;0;8;-6\right\}\)

22 tháng 10 2021

cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.

 

31 tháng 10 2023

a/

\(A=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)=\)

\(=13\left(3+3^4+3^7+...+3^{118}\right)⋮13\)

 

\(A=3\left(1+3+3^2+3^3\right)+...+3^{117}\left(1+3+3^2+3^3\right)=\)

\(A=40\left(3+3^5+3^9+...+3^{117}\right)⋮40\)

b/

\(A=3+3^2\left(1+3+3^2+...+3^{118}\right)=\)

\(=3+9\left(1+3+3^2+...+3^{118}\right)\) chia 9 dư 3 nên A không chia hết cho 9

c/

\(3A=3^2+3^3+3^4+...+3^{121}\)

\(\Rightarrow2A=3A-A=3^{121}-3\Rightarrow2A+3=3^{121}\)

\(2A+3=3^{121}=3.3^{120}=3.\left(3^4\right)^{30}=3.81^{30}\) có tận cùng là 3 nên 2A+3 không phải là số chính phương

17 tháng 10 2021

Giúp với

Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha


 

20 tháng 12 2015

tích từ bài từng câu a , b , ... ra đi

17 tháng 11 2023

Sửa đề:

\(A=2.5.7.9.11.13+78\)

Ta có:

*) \(2.5.7.9.13⋮3\)

\(78⋮3\)

\(\Rightarrow A⋮3\)

*) \(2.5.7.9.13=18.5.7.13⋮6\)

\(78⋮6\)

\(\Rightarrow A⋮6\)

*) \(2.5.7.9.13⋮9\)

\(78⋮̸9\)

\(\Rightarrow A⋮̸9\)

*) \(2.5.7.9.13⋮13\)

\(78⋮13\)

\(\Rightarrow A⋮13\)